$Peer\ methods\ for\ the\ numerical\ solution\ of\ general\ second\ order\ IVPs$

Luis Randez (University of Zaragoza), Manuel Calvo, Juan Ignacio Montijano

In this work, we solve numerically general second order initial vale problems y'' = f(t, y, y') by means of explicit two-step Peer methods, given by

$$Y_{m+1} = BY_m + hAZ_m + h^2QF_{m-1} + h^2RF_m,$$

$$Z_{m+1} = \hat{B}Z_m + h\hat{Q}F_{m-1} + h\hat{R}F_m,$$
(1)

where the stage vectors evaluated at $t_{mi} = t_m + c_i h$ are

$$Y_m = (Y_{mi})$$
, where $Y_{mi} \simeq y(t_{mi})$,
 $Z_m = (Z_{mi})$, where $Z_{mi} \simeq y'(t_{mi})$,
 $F_m = (f(t_{mi}, Y_{mi}, Z_{mi}))$. (2)

We propose explicit Peer methods with minimum number of effective function evaluations per step. We analyze the 0-stability, consistency and convergence of these schemes.

References

1. S. Jebens, R. Weiner, H. Podhaisky, B.A. Schmitt. Explicit multi-step peer methods for special second-order differential equations. *Applied Mathematics and Computation* **202** 803–813, 2008

[link to pdf] [back to Numdiff-17]