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1. Conference Site
The conference will take place in the Computer Science building situated within the Heide
Campus at Von-Seckendorff-Platz 1. To get there from the “TRYP by Wyndham Halle”
you can use any tram leaving eastwards from the stop “Zentrum Neustadt”, then get
off at stop “Rennbahnkreuz” and change to bus 65 and finally get off at stop “Heinrich-
Damerow-Str./Weinberg Campus”. You can also take tram No. 7 from ‘Halle Haupt-
bahnhof’ via “Marktplatz” to “Weinberg Campus” and get off at stop “Straßburger Weg”.

2. Conference Office and Registration
The conference office will be open on Sunday, 2 September 2018, from 17:00 to 20:00 in
the lobby of the “TRYP by Wyndham Halle” (+49 345 69310). During the week it will
be situated at the conference site in room 1.03. It will be open on Monday, Tuesday
and Thursday from 8:00 to 16:00, and on Wednesday and Friday from 8:00 to 12:00.
You can reach the conference office by phone +49 345 5524799 (active from Monday on).
Participants who have not yet paid the conference fee can pay the conference fee in cash
at the conference office. Please note that we cannot accept credit cards or cheques.

3. Lectures
The lecture times as given in the programme already include five minutes for discussion.
Session chairs will make sure that speakers do not exceed their allocated time. All lecture
rooms will be equipped with laptop and data projector.

4. Coffee and Tea Breaks, Lunch
Coffee and tea will be provided during the morning and afternoon breaks in a room close
to the conference office. For lunch, the Mensa Weinberg is a 15 minute walk away.
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5. Computer and Internet Access
At the conference site you can access the internet using eduroam or using wifi with SSID
event-net user name numdiff@uni-halle.de password FSifxre6. Note that you may need
to add a security exception in order to connect to this network. We have reserved room
1.30 for discussions.

6. Conference Dinner
The conference dinner will be held in the “TRYP by Wyndham Halle” on Thursday, at
19:00. The dinner ticket is included in the conference fee.

7. Tour to Bauhaus Dessau, UNESCO World Heritage, on Wednesday afternoon
If you are interested then please register for the excursion by Monday at the conference
office. Busses will leave from the conference site at 12:30 and will return to Halle at around
19:30. After the guided tours through the main building and the “Meisterhäuser”, we
will have coffee and cake in the souterrain café-bistro.

The Bauhaus building (left) was designed by Walter Gropius in 1925. A glass facade on
the load-bearing framework allows a view of the interior workings. In the workshop wing in
Dessau this provides clear view of the constructive elements. The design does not visually
amplify the corners of the building, which creates an impression of transparency. Gropius
designed the various sections of the building differently, separating them consistently
according to function.

The master’s houses (right) were planned by Walter Gropius using industrially prefab-
ricated components. He wished to realise the principles of rational construction, both in
the architecture and in the process of building per se. In view of the technical resources
available at the time, his plan was only partially realised. The buildings take the form
of interlocking cubic structures of various heights. Towards the street the semi-detached
houses are distinguished by generously glazed studios; vertical strip windows on the sides
sheds light into the staircases. The light-coloured houses have generously-sized terraces
and balconies and feature colourful accents on the window reveals, the undersides of the
balconies and the drainpipes. See https://www.bauhaus-dessau.de for more details.

8. Conference Proceedings
The proceedings of NUMDIFF-15 will be published as a special issue of the Journal of
Computational and Applied Mathematics. Guest editors are the members of the scientific
committee and the managing guest editor is Jens Lang. Every speaker of NUMDIFF-
15 can submit a manuscript for consideration of publication in this special issue. The
deadline for manuscript submission is 10 January 2019. See https://sim.mathematik.

uni-halle.de/numdiff/Numdiff15/proceedings.
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1 Programme Overview

R 3.28 R 1.26 R 1.23 R 1.27 R 1.29
Monday
09:00 –Opening–
09:20 Schönlieb
10:10 –Break–
10:40 Gunzburger
11:30 Hansen
12:20 –Lunch–
14:00 März Debrabant Garrappa Steinebach Pfurtscheller
14:25 Hanke D’Ambrosio Abuaisha Eisenmann Piazzola
14:50 Arnold Almuslimani Jiang Stillfjord
15:15 Mohammadi Arara Zhao Kheiri Estiar
15:40 –Break– –Break– –Break– –Break– –Break–
16:10 Geiser Snoeijer Sandu Hojjati Hadjimichael
16:35 Klinge Kulikova Hachtel Abdi Kalasour Leibold
17:00 Residori Ngnotchouye Bauer Paternoster Maier
17:25 Pereira de la Cruz Erbay, H. A. Krämer
18:30 Welcome reception

Tuesday
08:30 Constantinescu
09:20 Scheichl
10:10 –Break–
10:40 Eremin Celledoni Kulikov Hosseini Cortes Garcia

11:05 Farzi Gerisch Meisrimel Ávila Barrera Fang
11:30 Rihan Knoth Rosemeier Al-Hdaibat Vulkov
11:55 Kumar Dörich Singh Pandit Koleva
12:20 –Lunch– –Lunch–

Minisymposium Minisymposium
14:00 Jimenez Charrier
14:30 Wenger Bréhier
15:00 Couéraud Campbell
15:30 Martiradonna Lang, A.
16:00 –Break–
16:30 Legoll
17:00 Trstanova
17:30 Laurent
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R 3.28 R 1.26 R 1.23 R 1.27 R 1.29
Wednesday

Special session
08:30 –Opening–
08:40 Ruuth
09:10 –Break–
09:40 Lang, J. Jax Steinhoff Li
10:05 Horváth Estévez Schwarz Roldan Wang
10:30 Teunissen Hante Faleichyk Egger
10:55 Higueras Meyer Fekete Liu
11:20 –Lunch–
12:30 Buses depart for Dessau.

Thursday
08:30 Cohen
09:20 Meister
10:10 –Break–
10:40 in ’t Hout Hinze Izzo Owren Zegeling
11:05 Sanderse Pulch Weiner Wieloch Zerulla
11:30 Vandecasteele Paschkowski Schneider Wandelt Freese
11:55 Zielinski Tietz Kopecz Tapley
12:20 –Lunch– –Lunch–

Minisymposium Minisymposium
14:00 Benner Jeffrey
14:30 Himpe Hairer
15:00 Buhr Mehrmann
15:30 Peitz Guglielmi
16:00 –Break– –Break–
16:30 Banholzer Elia
17:00 Gräßle Streubel
17:30 Ullmann Dieci
19:00 Conference dinner

Friday
08:30 Van Vleck
09:20 González Pinto
10:10 Ketcheson
11:00 –Break–
11:20 Gander
12:10 Massot
13:00 –Closing–
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2 Scientific Programme

Monday

Room 3.28
09:00 Opening
09:20 Schönlieb, Carola-Bibiane

Variational models and partial differential equations for mathematical imaging
10:10 Break
10:40 Gunzburger, Max

A Localized Reduced-Order Modeling Approach for PDEs with Bifurcating Solu-
tions

11:30 Hansen, Eskil
Domain decomposition and parabolic problems – a time integrator approach

12:20 Lunch
14:00 März, Roswitha

Questions concerning differential-algebraic operators
14:25 Hanke, Michael

A least-squares collocation method for non-linear higher index differential-
algebraic equations

14:50 Arnold, Martin
Improving the initialization of some integrators for index-3 DAEs and related stiff
ODEs

15:15 Mohammadi, Fatemeh
Adaptive β-blocked multistep methods for index 2 Euler-Lagrange differential
algebraic equations

15:40 Break
16:10 Geiser, Jürgen

Serial and Parallel Iterative Splitting Methods: Algorithms and Applications
16:35 Klinge, Marcel

Numerical tests with AMF methods
17:00 Residori, Mirko

A splitting approach for the KdV equation with transparent boundary conditions
17:25 Pereira, Matheus Fernando

Parametric dependence of the advection-diffusion equation in two dimensions
Room 1.26
14:00 Debrabant, Kristian

Analysis of multilevel Monte Carlo using the Milstein discretisation
14:25 D’Ambrosio, Raffaele

Stability issues in the discretization of stochastic differential equations
14:50 Almuslimani, Ibrahim

Optimal explicit stabilized integrator of weak order one for stiff and ergodic
stochastic differential equations

15:15 Arara, Alemayehu Adugna
Stochastic B–series and order conditions for exponential integrators

15:40 Break
16:10 Snoeijer, Jacob

Numerical valuation of Bermudan basket options via partial differential equations
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16:35 Kulikova, Maria
Numerical solution of the neural field equation in the presence of random dis-
turbance

17:00 Ngnotchouye, Jean Medard
Weak convergence for a stochastic exponential integrator and finite element dis-
cretization of stochastic partial differential equation with additive noise

17:25 de la Cruz, Hugo
Numerical integration of a class of multiplicative-noise Stochastic Differential
Equations via a RDE approach

Room 1.23
14:00 Garrappa, Roberto

Numerical simulation of Maxwell’s systems in media with anomalous dielectric
properties

14:25 Abuaisha, Tareq
On the simulation in time and frequency domain of a fractional-order model of
an electrical coil within resonance frequency

14:50 Jiang, Xingzhou
Generalized Adams methods to solve fractional differential equations with delay

15:15 Zhao, Wenjiao
Lagrange hybridized discontinuous Galerkin method for fractional Navier-Stokes
equations

15:40 Break
16:10 Sandu, Adrian

MRI-GARK: A Class of Multirate Infinitesimal GARK Methods
16:35 Hachtel, Christoph

A multirate implicit Euler scheme for semi-explicit DAEs of index-1: consistency
and convergence analysis

17:00 Bauer, Tobias
Order conditions for multirate infinitesimal step methods

17:25 Erbay, Husnu Ata
A Semi-Discrete Numerical Method for Convolution-Type Unidirectional Wave
Equations

Room 1.27
14:00 Steinebach, Gerd

Modelling and numerical simulation of hydrogen flow in networks
14:25 Eisenmann, Monika

Domain decomposition for nonlinear parabolic problems in a variational frame-
work

15:40 Break
16:10 Hojjati, Gholam Reza

Multivalue–multistage methods for the numerical solution of the nonlinear Vol-
terra integro-differential equations

16:35 Abdi Kalasour, Ali
A class of multivalue-multistage schemes for the numerical solution of Volterra
integral equations
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17:00 Paternoster, Beatrice
Adapted discretization of evolutionary problems by non-polynomially fitted nu-
merical methods

Room 1.29
14:00 Pfurtscheller, Lena-Maria

Polynomial chaos expansion for solving stochastic control problems
14:25 Piazzola, Chiara

A low-rank splitting integrator for matrix differential equations
14:50 Stillfjord, Tony

Singular value decay of solutions to operator-valued differential Lyapunov and
Riccati equations

15:15 Kheiri Estiar, Hossein
Numerical method for solving a fractional order HIV model arising from optimal
control

15:40 Break
16:10 Hadjimichael, Yiannis

Accurate and stable boundary conditions for high-order discretizations of hyper-
bolic PDEs

16:35 Leibold, Jan
Linearly implicit time integration of semilinear wave equations with dynamic
boundary conditions

17:00 Maier, Bernhard
Numerical simulation of rf-SQUIDs

17:25 Krämer, Patrick
Efficient Numerical Schemes for Highly Oscillatory Klein-Gordon and Dirac type
Equations
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Tuesday

Room 3.28
08:30 Constantinescu, Emil

Time Stepping Methods with Forward a Posteriori Error Estimation
09:20 Scheichl, Robert

Multilevel Uncertainty Quantification with Sample-Adaptive Model Hierarchies
10:10 Break
10:40 Eremin, Alexey

Delay dependent stability analysis of S-ROCK method
11:05 Farzi, Javad

Flux limiters on clustered points for solving hyperbolic conservation laws
11:30 Rihan, Fathalla

Parameter Identification for Delay Differential Equations
11:55 Kumar, Vikas

Haar wavelet quasilinearization approach for numerical solution of Burger type
equation via Lie group method

12:20 Lunch

Minisymposium Computational mechanics and geometric numerical integration,
organised by Sigrid Leyendecker (Erlangen) and Klas Modin (Chalmers)

14:00 Jimenez, Fernando
A discrete fractional approach for modelling dissipative mechanical systems

14:30 Wenger, Theresa
Numerical properties of mixed order variational integrators applied to dynamical
multirate systems

15:00 Couéraud, Benjamin
Variational discretization of the Navier-Stokes-Fourier system

15:30 Martiradonna, Angela
Positive and mass-conservative integrators for biochemical systems

Room 1.26
10:40 Celledoni, Elena

Deep learning as optimal control problems
11:05 Gerisch, Alf

FFT-based evaluation of nonlocal terms in PDE systems
11:30 Knoth, Oswald

Split-explicit time integration methods for finite element discretizations
11:55 Dörich, Benjamin

Splitting methods for highly oscillatory differential equations
12:20 Lunch
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Minisymposium Numerical methods for stochastic (partial) differential equations,
organised by Gilles Vilmart (Geneva)

14:00 Charrier, Julia
Existence, uniqueness of the solution and convergence of finite volume approxim-
ations for hyperbolic scalar conservation laws with multiplicative noise

14:30 Bréhier, Charles-Edouard
Analysis of splitting schemes for the stochastic Allen-Cahn equation

15:00 Campbell, Stuart
Adaptive time-stepping for Stochastic Partial Differential Equations with non-
Lipschitz drift

15:30 Lang, Annika
SPDE simulation on spheres

16:00 Break
16:30 Legoll, Frederic

Effective dynamics for non-reversible stochastic differential equations
17:00 Trstanova, Zofia

Sampling strategies and diffusion maps
17:30 Laurent, Adrien

Exotic aromatic B-series for the order conditions of the long time numerical in-
tegration of ergodic stochastic differential equations.

Room 1.23
10:40 Kulikov, Gennady

Doubly quasi-consistent fixed-stepsize implicit two-step peer methods for stiff
ordinary differential equations

11:05 Meisrimel, Peter
Goal oriented time adaptivity using local error estimates

11:30 Rosemeier, Juliane
Combining a stroboscopic method with the spectral deferred correction method

11:55 Singh, Sukhveer
Numerical simulation to capture the pattern formation

Room 1.27
10:40 Hosseini, Seyyed Ahmad

Rational finite differences method based on the barycentric interpolants for ODEs

11:05 Ávila Barrera, Andrés
hp-FEM solutions for option price Bates’ model

11:30 Al-Hdaibat, Bashir
Homoclinic solutions in Bazykin’s predator-prey model

11:55 Pandit, Sapna
Haar Wavelets based Algorithms for Simulation of Hyperbolic Type Wave Equa-
tions

Room 1.29
10:40 Cortes Garcia, Idoia

Parallelised Waveform Relaxation for Field/Circuit Coupled Systems
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11:05 Fang, Yonglei
Symmetric collocation ERKN methods for general second order oscillatory dif-
ferential equations

11:30 Vulkov, Lubin
Two-grid Algorithms for Solution of Difference Equations of Compressible Fluid
Flow

11:55 Koleva, Miglena
Fitted Finite Volume Method for Optimal Portfolio in a Exponential Utility
Regime-Switching Model
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Wednesday

Room 3.28

Special session in memory of Willem Hundsdorfer (1954-2017),
chaired by Karel in ’t Hout (Antwerp)

08:30 Opening
08:40 Ruuth, Steven

Linearly Stabilized Schemes for the Time Integration of Stiff Nonlinear PDEs
09:10 Break
09:40 Lang, Jens

IMEX-Peer Methods Based on Extrapolation
10:05 Horváth, Zoltán

Positivity and SSP by implicit numerical methods for ODEs and DAEs
10:30 Teunissen, Jannis

Willem Hundsdorfer’s role and research in the Multiscale Dynamics group at CWI
10:55 Higueras, Inmaculada

On Strong Stability Preserving time stepping methods
11:20 Lunch
Room 1.26
09:40 Jax, Tim

Linearly Implicit Rosenbrock-Wanner-Type Methods with Non-Exact Jacobian
for the Numerical Solution of Differential-Algebraic Equations

10:05 Estévez Schwarz, Diana
InitDAE: A new approach for the computation of consistent values, the index
determination and the diagnosis of singularities of DAEs

10:30 Hante, Stefan
Three Lie group DAE time integration methods tested on a Cosserat rod model

10:55 Meyer, Tobias
BDF and Newmark-Type Index-2 and Index-1 Integration Schemes for Con-
strained Mechanical Systems

Room 1.23
09:40 Steinhoff, Tim

On Singly Implicit Runge-Kutta Methods of High Stage Order that Utilize Ef-
fective Order

10:05 Roldan, Teo
New low-storage SSP Runge-Kutta methods

10:30 Faleichyk, Barys
Minimal residual linear multistep methods

10:55 Fekete, Imre
On the zero-stability of multistep methods on smooth nonuniform grids

Room 1.27
09:40 Li, Lu

Volume preserving diffeomorphisms and the Kahan method
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10:05 Wang, Bin
Volume-preserving exponential integrators

10:30 Egger, Herbert
Structure preserving discretization of evolution problems with dissipation

10:55 Liu, Changying
Superconvergence of the structure-preserving trigonometric collocation methods
for solving the nonlinear Hamiltonian wave equations
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Thursday

Room 3.28
08:30 Cohen, David

Exponential integrators for stochastic partial differential equations
09:20 Meister, Andreas

Modified Patankar-Runge-Kutta Schemes for Conservative Production-
Destruction Equations

10:10 Break
10:40 in ’t Hout, Karel

On Multistep Stabilizing Correction Splitting Methods with Applications to the
Heston Model

11:05 Sanderse, Benjamin
Runge-Kutta methods for index-2 and index-3 differential-algebraic equations
arising from incompressible flow problems

11:30 Vandecasteele, Hannes
Efficiency of micro-macro acceleration for scale-separated stochastic differential
equations

11:55 Zielinski, Przemyslaw
Convergence and stability of micro-macro acceleration method for scale-separated
SDEs

12:20 Lunch

Minisymposium Model order reduction for dynamical systems,
organised by Michael Hinze (Hamburg)

14:00 Benner, Peter
Gramian-based Model Reduction for Classes of Nonlinear Systems

14:30 Himpe, Christian
From Low-Rank to Data-Driven Gramian-Based Model Reduction

15:00 Buhr, Andreas
Randomization in Localized Model Order Reduction

15:30 Peitz, Sebastian
Data driven feedback control of nonlinear PDEs using the Koopman operator

16:00 Break
16:30 Banholzer, Stefan

Multiobjective Optimal Control using Reduced-Order Modeling
17:00 Gräßle, Carmen

Adaptive trust-region POD for optimal control of the Cahn-Hilliard equation
17:30 Ullmann, Sebastian

Model order reduction for space-adaptive simulations of unsteady incompressible
flows

Room 1.26
10:40 Hinze, Michael

Adaptivity in model order reduction with proper orthogonal decomposition
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11:05 Pulch, Roland
Model order reduction for linear dynamical systems with quadratic outputs

11:30 Paschkowski, Manuela
Orbital convergence of timestepping schemes for non-smooth mechanics

11:55 Tietz, Daniel Paul
Convergence of regularised solutions of piecewise smooth differential equations

12:20 Lunch

Minisymposium Piecewise Smooth Differential Equations,
organised by Luca Dieci (Atlanta) and Nicola Guglielmi (L’Aquila)

14:00 Jeffrey, Michael
Hidden Dynamics

14:30 Hairer, Ernst
On the limit of regularized piecewise-smooth dynamical systems

15:00 Mehrmann, Volker
Regularization and numerical solution of hybrid differential-algebraic equations

15:30 Guglielmi, Nicola
Discontinuous ODEs and graph optimization

16:00 Break
16:30 Elia, Cinzia

Qualitative behavior of numerical solutions of planar discontinuous dynamical
systems

17:00 Streubel, Tom
Piecewise smooth dynamic simulations via algorithmic piecewise differentation

17:30 Dieci, Luca
Is integrating a non-smooth system harder than integrating a smooth one?

Room 1.23
10:40 Izzo, Giuseppe

Construction of Strong Stability Preserving Implicit-Explicit General Linear
Methods

11:05 Weiner, Rüdiger
Optimally zero-stable superconvergent IMEX Peer methods

11:30 Schneider, Moritz
Superconvergent IMEX Peer methods with A-stable implicit part

11:55 Kopecz, Stefan
Modified Patankar-Runge-Kutta schemes for Advection-Diffusion-Production-
Destruction Systems

Room 1.27
10:40 Owren, Brynjulf

Adaptive time-stepping in Lie group integrators
11:05 Wieloch, Victoria

BDF integrators for mechanical systems on Lie groups
11:30 Wandelt, Michele

Geometric integration on Lie groups using the Cayley transformation
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11:55 Tapley, Benjamin
Collective integration of Hamilton PDEs

Room 1.29
10:40 Zegeling, Paul Andries

Boundary value methods for semi-stable differential equations
11:05 Zerulla, Konstantin

A uniformly exponentially stable ADI scheme for Maxwell equations
11:30 Freese, Jan Philip

Numerical homogenization of the Maxwell-Debye system: Semidiscrete error ana-
lysis
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Friday

Room 3.28
08:30 Van Vleck, Erik

Time Dependent Stability: Computation and Applications
09:20 González Pinto, Severiano

Some aspects of the time integration of multidimensional parabolic problems with
mixed derivatives

10:10 Ketcheson, David
The method of (uncountably many) characteristics

11:00 Break
11:20 Gander, Martin J.

Is Optimal Really Good in Domain Decomposition ? (or why multigrid coarse
spaces might not be suitable)

12:10 Massot, Marc
Adaptive time-space algorithms for the simulation of multi-scale reaction waves
with error control

13:00 Closing
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3 Abstracts

A class of multivalue-multistage schemes for the numerical solution of Volterra
integral equations

Ali Abdi Kalasour, Seyyed Ahmad Hosseini, Gholam Reza Hojjati, Mon 16:35 R 1.27

We are going to investigate a class of general linear methods combined with a quadrature
rule for the numerical solution of Volterra integral equations (VIEs) of the second kind. We
construct such methods up to order four in which the methods of orders one and two are A–
and V0(α)–stable, with maximum value for α, and methods of orders three and four are stable
with a large region of absolute stability. The efficiency and capability of the introduced schemes
are verified by solving some stiff and nonstiff VIEs.
Keywords: Volterra integral equations, General linear methods, Order conditions, Stability
analysis.

On the simulation in time and frequency domain of a fractional-order model of
an electrical coil within resonance frequency

Tareq Abuaisha, Jana Kertzscher and Roberto Garrappa, Mon 14:25 R 1.23

As windings of an electrical coil are only separated by a thin insulating layer, there are inherent
tiny capacitors formed between those windings. These tiny capacitors are added up to form
together the parasitic capacitance of the coil. Thus as number of windings for a specific coil
increases, the inductance and in a less manner the parasitic capacitance of the coil will also
proportionally increase.
At frequencies which lie within almost a decade from the self-resonant frequency, this parasitic

”
stray“ capacitance will also affect the total impedance of the coil [1]. In this talk we will analyze

the fractional-order model of a laboratory coil within resonance frequency. The corresponding
multi-order fractional differential equation (MoFDE) will be solved numerically in time domain.
In order to investigate the accuracy of the proposed solution, the results in time domain shall
be compared with the exact solution in frequency domain.
Simulation results of the fractional-order model will be compared with experimental results
whereas unknown parameters of the model are to be identified through an optimization process
that is based on the method of least squares.

[1] T. Abuaisha, J. Kertzscher, Fractional-order Impedance Modeling and Parameter Identi-
fication of an Electrical Coil with Interchangeable Core, Fractional Differentiation and Its
Applications (ICFDA), International Conference on, TU Bergakademie Freiberg, 2018 (in
press)

Homoclinic solutions in Bazykin’s predator-prey model
Bashir Al-Hdaibat, Tue 11:30 R 1.27

In this paper we study the homoclinic bifurcations rooted at a (nondegenerate) Bogdanov-
Takens (BT) point in the Bazykin’s predator-prey model. Namely, we derive an explicit approx-
imation to the homoclinic solutions rooted there. The paper describes the use of the symbolic
manipulation language MAPLE for the analysis of the homoclinic bifurcations phenomena in
smooth systems of ODEs. It shows how symbolic manipulation language can effectively used
to derive explicit expressions for the homoclinic solutions rooted at a (nondegenerate) BT
bifurcation.
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Optimal explicit stabilized integrator of weak order one for stiff and ergodic
stochastic differential equations

Ibrahim Almuslimani, Assyr Abdulle, Gilles Vilmart, Mon 14:50 R 1.26

Explicit stabilized Runge-Kutta methods are efficient for solving stiff (deterministic or stochastic)
differential equations in large dimensions. In this talk, we present a new explicit stabilized
scheme of weak order one for stiff and ergodic stochastic differential equations (SDEs). In the
absence of noise, the new method coincides with the classical deterministic stabilized scheme
(or Chebyshev method) for diffusion dominated advection-diffusion problems and it inherits its
optimal stability domain size, in contrast to known existing methods for mean-square stable
stiff SDEs. In addition, the new method can be used to sample the invariant measure of a
class of ergodic SDEs, and combined with postprocessing techniques of geometric numerical
integration originally from the deterministic literature, it achieves a convergence rate of order
two at a negligible overcost.

Stochastic B–series and order conditions for exponential integrators
Alemayehu Adugna Arara, Kristian Debrabant, Anne Kværnø, Mon 15:15 R 1.26

We will discuss B–series for the solution of a stochastic differential equation of the form

dX(t) =

(
AX(t) + g0

(
X(t)

))
dt+

M∑
m=1

gl(X(t)) ? dWm(t), X(0) = x0,

for which the exact solution can be written as

X(t) = etAx0 +

∫ t

0

e(t−s)Ag0(X(s))ds+
M∑
m=1

∫ t

0

e(t−s)Agm(X(s)) ? dWm(s).

Based on this, we will derive an order theory for exponential integrators for such problems.
The integral w. r. t. the Wiener process has to be interpreted e. g. as an Itô or a Stratonovich
integral.
References
[1] https://arxiv.org/pdf/1801.02051.pdf

Improving the initialization of some integrators for index-3 DAEs and related
stiff ODEs

Martin Arnold, Mon 14:50 R 3.28

The direct application of ODE time integration methods to higher index DAEs results in nu-
merical solutions that satisfy constraint equations with high accuracy but show a systematic
deviation from the manifold that is defined by hidden constraints being obtained by differenti-
ation of the original constraints with respect to time.
Consistent initial values of the analytical solution comply with all the original and hidden
constraints in the DAE and do not share the systematic deviation of the numerical solution
from hidden constraint manifolds. Therefore, some correction terms need to be added if these
(analytically) consistent intial values are used for the initialization of the numerical solution
since otherwise large transient error terms and order reduction may be observed in some of the
solution components.
In the talk, we will discuss such improved initialization schemes for BDF and for generalized-
α methods being applied to a class of semi-explicit index-3 DAEs on linear spaces or on Lie
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groups. Guided by this analysis for constrained systems, we extend the error analysis to second
order ODEs with very stiff potential forces and discuss an improved initialization scheme for
Newmark type integrators like the generalized-α method.

(The talk is based on previous joint work with O. Brüls (Liège, Belgium) and A. Cardona (Santa
Fe, Argentina) on generalized-α methods and with V. Wieloch (Halle (Saale), Germany) on Lie
group BDF time integration.)

hp-FEM solutions for option price Bates’ model
Andrés Ávila Barrera, Cecilia Rapimán, Tue 11:05 R 1.27

For valuating options, several stochastic models have been developed, where several assumptions
on the market are imposed. For example, Black-Scholes’ model considers constant volatility
and local small changes. To overcome these simplifications, Bates’ model [4] includes stochastic
volatility and jumps, which corresponds to the following system of stochastic differential equa-
tions {

dSt = (α− 1
2
Yt)dt+

√
YtdW1 + dq,

dYt = ξ(η − Yt)dt‘ + θ
√
YtdW2

(1)

which can be reduced to a partial integro-differential equation on Ω× (0, T ) = (0, S0)× (0, 1)×
(0, T )

∂C

∂t
+ (r − q − κ (1))S

∂C

∂S
+

1
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C (S exp (x) , y, t)W (dx) = (r + λ)C.

with boundary conditions C(0, y, t) = 0, C(S0, y, t) = S0 −K and final condition C(S, y, T ) =
(S −K)+. The conditions on y are undefined.
Based on Achdou & Tchou [1], Hilber et al. [5], [6] and Reich et al. [9], we show the variational
formulation and prove a G̊arding type inequality. Also localization error is obtained. We base
our numerical studies on Almendral & OOsterlee [2], Ballestra & Sgarra [3] and Miglio & Sgarra
[8]. We propose that hp-FEM methods [7], as special method of singularly elliptic problems,
can be used to improve unstabilities of the FEM methods detected in the simplification of the
splitting. Some studies on the parameters on the effect of convective part over the diffusion
part are also considered.

Keywords: Stochastic option pricing models, hp-finite element method, degenerate partial
integro-differential equations

Mathematics Subject Classifications (2000):35K65, 65M15, 65M60, 65N30.
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Multiobjective Optimal Control using Reduced-Order Modeling
Stefan Banholzer, Stefan Volkwein, Eugen Makarov, Thu 16:30 R 3.28

Many optimization problems in applications can be formulated using several objective functions,
which are conflicting with each other. This leads to the notion of multiobjective or multicriterial
optimization problems.
This talk discusses the application of the reference point method in combination with model-
order reduction to multiobjective optimal control problems of elliptic and parabolic PDEs with
up to four cost functions. Since the reference point method transforms the multiobjective
optimal control problem into a series of scalar optimization problems, model-order reduction
is used to lower the computational cost. Due to the lack of a-priori analysis for the model-
order reduction, a-posteriori estimates are important to be able to ensure a good approximation
quality. To this end, an a-posteriori estimate for the problem at hand is introduced and used for
developing new strategies for efficiently updating the reduced-order model in the optimization
process.

Order conditions for multirate infinitesimal step methods
Tobias Bauer, Oswald Knoth, Mon 17:00 R 1.23

Multirate infinitesimal step methods (MIS) are generalised split-explicit Runge-Kutta methods
(RK) especially designed for problems in different temporal scales. They have been developed
and investigated for up to order three. It can be shown that they are somehow related to mul-
tirate generalized additive RK methods (MGARK). Following the ideas of MGARK methods,
the MIS methods can also be reformulated to partitioned RK methods.
In this presentation, applying the strategy of the reformulation, it will be shown how high-order
conditions can be derived. Furthermore, a method of 4th-order is developed and presented as
well as illustrated with numerical examples.
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Gramian-based Model Reduction for Classes of Nonlinear Systems
Peter Benner, Pawan Kumar Goyal, Thu 14:00 R 3.28

For linear input-output systems, system Gramian matrices are a long established tool to
quantify the properties controllability and observability. A range of associated Gramian-based
model reduction methods has been developed over the last decades utilizing those attributes,
starting with the landmark paper by Moore (1981) introducing balanced truncation in the form
it has been used since then. During the last two decades, the method has also become compu-
tationally feasible for truly large-scale systems arising from discretizing systems with dynamics
defined by unsteady PDEs. This is mainly due to low-rank techniques, allowing to compute the
information necessary for implementing balanced truncation at almost linear complexity w.r.t.
the order of the system (in contrast to the cubic complexity of traditional implementations).
We show that these techniques can also be used to define approximate balanced truncation
methods for some classes of nonlinear systems. This is based on combing low-rank techniques for
Gramian computation with the concept of truncated Gramians derived from the Volterra series
representation of the system response. We introduce these techniques for bilinear, quadratic-
bilinear, and polynomial systems. The performance of the new methods is illustrated by several
numerical examples.

Analysis of splitting schemes for the stochastic Allen-Cahn equation
Charles-Edouard Bréhier, Jianbao Cui, Ludovic Goudenège, Jialin Hong,

Tue 14:30 R 1.26

The stochastic Allen-Cahn equation, with additive space-time white noise perturbation, in
dimension 1, is given by the following semilinear SPDE

dX(t) = AX(t)dt+
(
X(t)−X(t)3

)
dt+ dW (t).

Since the nonlinearity x 7→ x − x3 is not globally Lipschitz continuous, the design of suitable
temporal discretization scheme is delicate. We propose to use a splitting strategy, taking into
account that the flow

(
Φt(z)

)
t≥0

of the ODE ż = z − z3 is exactly known.
We study numerical schemes defined as

Xn+1 = e∆tAΦ∆t(Xn) +

∫ (n+1)∆t

n∆t

e(n∆t−t)AdW (t),

(exact sampling of the stochastic convolution), or as

Xn+1 = S∆tΦ∆t(Xn) + S∆t

(
W ((n+ 1)∆t)−W (n∆t)

)
with S∆t = (I −∆tA)−1 (semi-implicit discretization of the stochastic convolution).
Moment estimates, as well as strong and weak convergence rates, will be presented.
I will also present numerical simulations supporting the theoretical results.

Randomization in Localized Model Order Reduction
Andreas Buhr, Thu 15:00 R 3.28

Localized (in space) model order reduction is a promising approach for many simulation tasks
in engineering because of its good parallelization behavior and and the potential reuse of local
models. Especially for highly complex structures with large geometric detail, large simulation
speedups can be achieved. We focus on signal integrity simulations in printed circuit boards,
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which can be performed by approximating the solution of the time harmonic Maxwell’s equation.
Such simulations often take several hours or days with classical methods, because even a coarse
mesh easily leads to O(108) or more unknowns.
To generate local approximation spaces for localized model order reduction, we recently pro-
posed to employ methods from randomized numerical linear algebra (RandNLA) [A. Buhr and
K. Smetana, SIAM J. Sci. Comput., 40(4), A2120-A2151]. We define local transfer operat-
ors which have quickly decaying singular values and approximate their left singular vectors
to obtain good local approximation spaces. RandNLA provides fast algorithms having good
parallelization behavior and provable convergence rates for this task.
We will showcase the application of randomized local model order reduction on the signal
integrity simulation for an Olimex OLinuXino A64 mini PC (Raspberry Pi like).

Adaptive time-stepping for Stochastic Partial Differential Equations with
non-Lipschitz drift

Stuart Campbell, Conall Kelly, Gabriel Lord, Tue 15:00 R 1.26

Traditional explicit numerical methods to simulate stochastic differential equations (SDEs) or
stochastic partial differential equations (SPDEs) rely on globally Lipschitz drift and diffusion
coefficients to ensure convergence. Many applications of interest include non Lipschitz drift
functions. Implicit methods (when they exist) can often be too computationally expensive for
practical uses. Therefore construction of explicit methods to simulate SDEs or SPDEs with
non-Lipschitz drift is of interest.
Tamed methods are a class of numerical methods that perturb the drift coefficient to ensure
strong convergence in the presence of non-Lipschitz drift. In this talk we present an explicit
method for simulation of SPDEs which guarantees strong convergence via adaptive time-step
size selection instead of drift taming. We will outline the theory behind the method and
illustrate the efficiency through some numerical simulations.

Deep learning as optimal control problems
Elena Celledoni, Tue 10:40 R 1.26

The motivation of this talk comes from recent work of Haber and Ruthotto, where deep learning
neural networks have been interpreted as discretisations of an optimal control problem. We
review the first order conditions for optimality, and the conditions ensuring optimality after
discretization. This leads to a class of algorithms for solving the discrete optimal control
problem which guarantee that the corresponding discrete necessary conditions for optimality
are fulfilled. We discuss two different deep learning algorithms and make a preliminary analysis
of the ability of the algorithms to generalize.

Existence, uniqueness of the solution and convergence of finite volume
approximations for hyperbolic scalar conservation laws with multiplicative noise

Julia Charrier, Caroline Bauzet, Vincent Castel, Thierry Gallouët, Tue 14:00 R 1.26

We are interested here in multi-dimensional nonlinear scalar conservation laws forced by a
multiplicative noise with a general time and space dependent flux-function. We address simul-
taneously theoretical and numerical issues. More precisely we establish existence, uniqueness
and some properties of the stochastic entropy solution together with the convergence of a finite
volume scheme. The results proposed in this work suppose more general fluxes than the ones
considered in the literature and the main novelty here is the use of the numerical approximation
to get both the existence and the uniqueness of the solution. We also provide a L∞ stability
result as well as a time continuity property on the stochastic entropy solution to complete this
study.
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Exponential integrators for stochastic partial differential equations
David Cohen, R. Anton, G. Dujardin, S. Larsson, L. Quer-Sardanyons, M. Sigg, X. Wang,

Thu 08:30 R 3.28

The aim of the presentation is to give a brief, and hopefully not too technical, overview on
the numerical discretisation of various stochastic partial differential equations (SPDEs) by
exponential-type integrators. We begin by introducing SPDEs and the main ideas behind
exponential integrators. We next present recent results on the use of such numerical schemes
for the time integration of stochastic wave equations, stochastic Schrödinger equations, and
stochastic heat equations.

Time Stepping Methods with Forward a Posteriori Error Estimation
Emil Constantinescu, Tue 08:30 R 3.28

Global or a posteriori error represents the actual discretization error resulting after solving a
system of differential equations. Calculating and controlling the a posteriori error is considered
an expensive process, and therefore in practice only the local error (from one step to the next) is
used as a proxy for the solver accuracy. However, local error estimation is not always sufficient
or suitable. This talk will be focused on new time-stepping methods with built-in a posteriori
error estimates. These methods can be cast as general linear schemes that provide pointwise
global errors. Sufficient convergence conditions and order barriers are established. A few
other strategies for a posteriori error estimation will be reviewed and shown that they can be
reduced to the proposed strategy as particular cases. The theoretical findings will be illustrated
on examples based on ordinary and partial differential and algebraic equations. Global error
control and adaptivity will be addressed. The implementation of these methods in PETSc, a
portable high-performance scientific computing library will also be discussed.

Parallelised Waveform Relaxation for Field/Circuit Coupled Systems
Idoia Cortes Garcia, Iryna Kulchytska-Ruchka, Sebastian Schöps, Tue 10:40 R 1.29

When coupling systems, for example describing different multiphysical problems, often each
subsystem can already be solved with dedicated software. This, as well as a multirate behaviour
can be exploited by using waveform relaxation. Waveform relaxation with windowing divides
the simulation time interval I = [T0, Tend] into several smaller sub-intervals Ij = [Tj, Tj+1],
solves there the different systems separately and exchanges information iteratively between
them in order to converge to the solution of the coupled system.

On the other hand, Parareal is an algorithm that allows to parallelise time-domain simulations.
The goal of this talk is to combine both methods in a multiphysics framework in order to
parallelise the waveform relaxation iterations on the different sub-intervals Ij and eventually
speed-up the time to solution. In particular, this method is used in order to simulate the
coupling of the electromagnetic field inside a device with an electric circuit surrounding it.
This leads to the coupling of Maxwell’s equations with the system of differential algebraic
equations obtained from modified nodal analysis.
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Variational discretization of the Navier-Stokes-Fourier system
Benjamin Couéraud, François Gay-Balmaz, Tue 15:00 R 3.28

In this talk I will present an ongoing work with François Gay-Balmaz on the variational dis-
cretization of the compressible Navier-Stokes-Fourier system, in which the viscosity term and
the heat conduction term are handled within the variational approach to nonequilibrium ther-
modynamics developed by Gay-Balmaz and Yoshimura. In order to spatially discretize the
system we extend the geometric approach developped by Pavlov and al., which is particularly
well-adapted for the discretization of Euler-Poincaré systems whose configuration space is the
infinite-dimensional Lie group of diffeomorphisms. A careful treatment of the phenomenological
constraint is necessary. After this spatial discretization, we obtain a nonholonomic, variational
principle on a finite-dimensional Lie group. Finally we discretize in time the resulting system
using a nonholonomic variational integrator whose associated discrete evolution equations are
proved to respect the balance of energy of the system.

Stability issues in the discretization of stochastic differential equations
Raffaele D’Ambrosio, Mon 14:25 R 1.26

The aim of this talk is the analysis of various stability issues for numerical methods designed
to solve stochastic differential equations. We first aim to consider nonlinear Itô stochastic
differential equations (SDE): under suitable regularity conditions, exponential mean-square
stability holds, i.e. any two solutions X(t) and Y (t) of a SDE with E|X0|2 <∞ and E|Y0|2 <∞
satisfy

E|X(t)− Y (t)|2 ≤ E|X0 − Y0|2eαt, (1)

with α < 0. We aim to investigate the numerical counterpart of (1) when trajectories are gen-
erated by stochastic linear multistep methods, in order to provide stepsize restrictions ensuring
analogous exponential mean-square stability properties also numerically [1, 4]. This is a joint
research with Evelyn Buckwar (Johannes Kepler University of Linz).
We next consider second order stochastic differential equations describing the position of a
particle subject to the deterministic forcing f(x) and a random forcing ξ(t) of amplitude ε.
The dynamics exhibits damped oscillations, with damping parameter η. We aim to analyze
long-term properties for indirect stochastic two-step methods, with special emphasis to under-
standing the ability of such methods in retaining long-term invariance laws [2, 3]. This is a
joint research with Martina Moccaldi and Beatrice Paternoster (University of Salerno).
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Analysis of multilevel Monte Carlo using the Milstein discretisation
Kristian Debrabant, Michael B. Giles, Andreas Roessler, Mon 14:00 R 1.26

Using a simple Monte Carlo method with a numerical discretisation with first order weak
convergence, to achieve a root-mean-square error of O(ε) would require O(ε−2) independent
paths, each with O(ε−1) timesteps, giving a computational complexity which is O(ε−3). How-
ever, Giles’ multilevel Monte Carlo (MLMC) approach ([1]), which combines the results of
simulations with different numbers of timesteps, reduces the cost to O(ε−2) under certain cir-
cumstances.
In this presentation we analyse the efficiency of the MLMC approach for different options and
scalar SDEs using the Milstein discretisation, determining or bounding the order of convergence
of the variance of the multilevel estimator, and hence the computational complexity of the
method.
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Numerical integration of a class of multiplicative-noise Stochastic Differential
Equations via a RDE approach

Hugo de la Cruz, Mon 17:25 R 1.26

Many important Stochastic Differential Equations (SDEs) used to model noisy dynamical sys-
tems are driven by linear multiplicative noise diffusion-coefficients. In this work we consider
an approach, based on the conjugacy between this type of SDEs and an appropriate Random
Differential Equation, for constructing new integrators for the underlying system. In addition,
we discuss the possibility of devising numerical methods without assuming restrictive assump-
tions that typically are not satisfied by many SDEs in significant applications. Details on
the efficient implementation of the proposed methods are discussed and their performance is
illustrated through computer simulations.

Is integrating a non-smooth system harder than integrating a smooth one?
Luca Dieci, Cinzia Elia, Thu 17:30 R 1.26

In this talk we first consider ways to integrate a differential system with discontinuous right-
hand-side (DRHS). Then, by considering a smooth planar system having slow-fast motion,
where the slow motion takes place near a curve, we explore the idea of replacing the original
smooth system with a DRHS system, whereby the DRHS system coincides with the smooth one
away from a neighborhood of the curve. After this reformulation, we will obtain sliding motion
on the curve, and numerical methods apt at integrating for sliding motion can be applied. We
further consider bypassing the sliding motion altogether, and monitor entries (transversal) and
exits (tangential) on the curve. Numerical examples illustrate potential and challenges of this
approach.
This talk is based on the paper ”Smooth to discontinuous systems: a geometric and numerical
method for slow-fast dynamics”, by L. Dieci, C. Elia. In DCDS-B, 2018.
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Splitting methods for highly oscillatory differential equations
Benjamin Dörich, Marlis Hochbruck, Tue 11:55 R 1.26

In this talk we consider the time integration of highly oscillatory differential equations of the
form

y′′(t) = −Ω2y(t) + g(y(t))

which typically arise in the space discretizaion of semi linear wave equations. In contrast to
the classical analysis we do not assume high regularity of the solution but only a so called
finite energy condition. For ”nice” functions g one can use trigonometric integrators with filter
functions to obtain second order error estimates, cf. [1, Chapter 13] and references given there.
However, for g representing a first order differential operator these integrators fail. For example
in the linear case numerical experiments indicate very large error constants.
We show that much better results can be achieved by constructing new filter functions and
adapting the techniques from the analysis in [2]. Numerical examples confirming the theoretical
results are also presented.
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Structure preserving discretization of evolution problems with dissipation
Herbert Egger, Wed 10:30 R 1.27

We present a general framework for the systematic numerical approximation of dissipative
evolution problems. The approach is based on rewriting the evolution problem in a particular
form that complies with an underlying energy or entropy structure. Based on the variational
characterization of smooth solutions, we are then able to show that the approximation by
Galerkin methods in space and discontinuous Galerkin methods in time automatically leads to
numerical schemes that inherit the underlying dissipative structure of the evolution problem.
The proposed framework is rather general and can be applied to a wide range of applications.
This is demonstrated by a detailed discussion of a variety of test problems.

Domain decomposition for nonlinear parabolic problems in a variational
framework

Monika Eisenmann, Eskil Hansen, Mon 14:25 R 1.27

Nonlinear parabolic equations are frequently encountered in applications, but in practice con-
structing an approximation for these problems yields a large scale computational system. In
order to obtain an efficient algorithm for the numerical approximation, it can be useful to apply
a scheme that consists of a number of independently solvable subproblems to make use of a
parallel computing hardware.
In our work, we introduce a general framework of non-autonomous, inhomogeneous evolution
equations in a variational setting and show convergence of an operator splitting scheme via a
time discretization. This approach covers a fairly general class of parabolic differential equa-
tions. We exemplify the usage to a p-Laplacian type problem with a possibly time depending
domain decomposition.
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Qualitative behavior of numerical solutions of planar discontinuous dynamical
systems

Cinzia Elia, Luca Dieci, Timo Eirola, Thu 16:30 R 1.26

We consider a planar linear discontinuous system with an asymptotically stable periodic orbit
and we study the qualitative behavior of the numerical approximation obtained with forward
Euler with and without event location. Differences and similarities with the theory for smooth
systems will be highlighted and justified both numerically and theoretically.

A Semi-Discrete Numerical Method for Convolution-Type Unidirectional Wave
Equations

Husnu Ata Erbay, Saadet Erbay, Albert Erkip, Mon 17:25 R 1.23

In this study we prove the convergence of a semi-discrete numerical method applied to the
initial value problem for a general class of nonlocal nonlinear unidirectional wave equations
ut+(β ∗f(u))x = 0. Here the symbol * denotes the convolution operation in space, (β ∗v)(x) =∫
R β(x− y)v(y)dy, and the kernel β is even function with

∫
R β(x)dx = 1. Members of the class

arise as mathematical models for the propagation of dispersive waves in a variety of situations.
For instance, the Benjamin-Bona-Mahony equation and the Rosenau equation are members of
the class. Our calculations closely follow the approach in [1] where error analysis of a similar
semi-discrete method was conducted for the nonlocal bidirectional wave equations. As in [1],
the numerical method is built on the discrete convolution operator based on a uniform spatial
discretization. The semi-discretization in space and a truncation of the infinite spatial domain
to a finite one give rise to a finite system of ordinary differential equations in time. We prove
that solutions of the truncated problem converge uniformly to those of the continuous one with
the second-order accuracy in space when the truncated domain is sufficiently large. Finally,
for some particular choices of the convolution kernel, we provide numerical experiments that
corroborate the theoretical results.

[1] H.A. Erbay, S. Erbay and A. Erkip, Convergence of a semi-discrete numerical method for a
class of nonlocal nonlinear wave equations, arXiv:1805.07264v1 [math.NA] (to be published in
ESAIM: Mathematical Modelling and Numerical Analysis).

Delay dependent stability analysis of S-ROCK method
Alexey Eremin, Tue 10:40 R 3.28

The talk is concerned with the numerical solution of stochastic delay differential equations.
Stochastic Runge–Kutta–Chebyshev methods (S-ROCKs) are considered. Their delay-depen-
dent stability for a linear scalar test equation with real coefficients is studied. With help of the
so-called root locus technique, the full asymptotic stability region in mean square is obtained,
which is characterized by a sufficient and necessary condition in terms of the drift and diffusion
coefficients as well as time stepsize and the damping parameter eta. The derived condition is
compared with the analytical stability condition.

InitDAE: A new approach for the computation of consistent values, the index
determination and the diagnosis of singularities of DAEs

Diana Estévez Schwarz, René Lamour, Wed 10:05 R 1.26
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InitDAE is a prototype written in Python that computes consistent initial values of differential-
algebraic equations (DAE), determines their index with a projector based decoupling and a re-
lated condition number that permits the diagnosis of singularities. The consistent initialization
is determined using a projector based constrained optimization approach and the inherent dif-
ferentiations required in the higher index case are provided by automatic differentiation (AD),
using AlgoPy. Consequently, a detailed description of the local structural properties of the
DAE becomes possible using the SVD. InitDAE has been conceived for academic purposes and
is well-suited for examples of moderate size.

In this talk we give an overview of the used algorithms, demonstrate available features and
discuss future possibilities, in particular the integration with Taylor series methods.

Minimal residual linear multistep methods
Barys Faleichyk, Wed 10:30 R 1.23

Consider an initial value problem for the system of ODEs y′ = f(t, y) and suppose that we have
k starting values y0, . . . , yk−1 at points {tj} which are not necessarily equidistant. To compute
yk ≈ y(tk−1 + τ) take an explicit linear multistep method with unknown coefficients:

yk =
k−1∑
j=0

(τβjfj − αjyj). (1)

On the other hand consider the corresponding classic p-step implicit BDF formula

ck−pyk−p + . . .+ ckyk = τfk, p ≤ k. (2)

In the talk we discuss what happens if on each step of numerical integration the coefficients
{αj, βj} of (1) are chosen to minimize the norm of the residual of method (2). The main focus
will lie on the most tractable case of linear problems with f(t, y) = A(t)y + b(t).

Symmetric collocation ERKN methods for general second order oscillatory
differential equations

Yonglei Fang, Tue 11:05 R 1.29

This talk focus on the constuction of new symmetric collocation ERKN methods for second
order oscillatory problems by Lagrange interpolation. Linear stability of the new ERKN meth-
ods is analyzed. Numerical experiments show the high effectiveness of the new ERKN methods
compared to their RKN counterparts.

Flux limiters on clustered points for solving hyperbolic conservation laws
Javad Farzi, Tue 11:05 R 3.28

It is well known that the solutions of hyperbolic conservation laws have, in general, discon-
tinuities and shocks in the domain of solution. To obtain non-oscillatory, entropy satisfying
accurate solutions there are different approaches, which have been extensively studied in the
literature. A well-known approach is to use the flux limiters to control the spurious oscillations
and kill out the overshoots and undershoots in the vicinity of discontinuity or shock. In this
paper we mainly study the effect of grid clustering to reduce the mentioned oscillations and
provide sharp solutions.
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On the zero-stability of multistep methods on smooth nonuniform grids
Imre Fekete, Gustaf Söderlind, István Faragó, Wed 10:55 R 1.23

In this talk we investigate zero stability on compact intervals and smooth nonuniform grids.
The grid points {tn}Nn=0 are constructed as the image of an equidistant grid under a smooth
deformation map, i.e., tn = Φ(τn), where τn = n/N and the map Φ is monotonically increasing
with Φ(0) = 0 and Φ(1) = 1. We show that for all strongly stable linear multistep meth-
ods, there is an N∗ such that a condition of zero stability is always fulfilled for N > N∗,
provided that Φ ∈ C2[0, 1]. Thus zero stability is maintained whenever adjacent step sizes sat-
isfy hn/hn−1 = 1+O(N−1). This suggests that variable step size should always be implemented
using smooth step size changes.

The talk is based on the paper

G. Söderlind, I. Fekete, I. Faragó: On the zero-stability of multistep methods on smooth nonuni-
form grids, BIT Numer. Math., https://doi.org/10.1007/s10543-018-0716-y, 2018.

Numerical homogenization of the Maxwell-Debye system: Semidiscrete error
analysis

Jan Philip Freese, Dietmar Gallistl, Christian Wieners, Thu 11:30 R 1.29

In this talk we investigate time-dependent Maxwell’s equations coupled with the Debye model
for orientation polarization in a medium with highly oscillatory parameters. The goal is to
characterize the macroscopic behavior of the solution to the resulting integro-differential sys-
tem. We use analytical homogenization results to derive the effective Maxwell system with
the corresponding cell problems. The Finite Element Heterogeneous Multiscale Method (FE-
HMM) is applied to solve the homogenized Maxwell system and we give first insights into the
semidiscrete error analysis.

Is Optimal Really Good in Domain Decomposition ? (or why multigrid coarse
spaces might not be suitable)

Martin J. Gander, Fri 11:20 R 3.28

Domain Decomposition methods need in general a coarse correction to be scalable, and it seems
natural to use for this purpose a coarse grid like in multigrid methods. I will show in this talk
that while this indeed suffices to make the methods scalable, and thus ”optimal” in traditional
domain decomposition terminology, there are coarse corrections that lead to much faster two
level domain decomposition methods. To explain this, I will introduce the notion of an optimal
coarse space, and optimized approximations thereof. I will finally show that such coarse spaces
can do much more than just make the domain decomposition method scalable: they can fix
problems the underlying domain decomposition iteration has, like convergence problems for
high contrast media, divergence of the iterative Additive Schwarz method, and even lead to a
well posed Neumann-Neumann and associated FETI domain decomposition method in function
space.
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Numerical simulation of Maxwell’s systems in media with anomalous dielectric
properties

Roberto Garrappa, Mon 14:00 R 1.23

In materials showing anomalous dielectric properties, the polarization processes are described
in the frequency domain by constitutive laws based on nonlinear models with one or more
fractional powers.
As a consequence, the simulation in the time domain of Maxwell’s systems for such kind of
materials involves non-standard differential or pseudo-differential operators of fractional order
[1] whose numerical approximation requires new and specifically devised methods.
In this talk we consider the Havriliak-Negami model which applies to a large extent of materials
with anomalous dielectric relaxation properties. After discussing the mean features and prop-
erties of this model, we analyze the fractional derivative of Prabhakar type [2] involved for its
description in the time domain and we propose some approaches for the numerical simulation
of Maxwell’s systems.
The extension to other dielectric models, such as the Excess Wing model, is also addressed.

[1] R. Garrappa, F. Mainardi, G. Maione, Models of dielectric relaxation based on completely
monotone functions. Fractional Calculus Applied Analysis, 2016, 19(5), 1105-1160
[2] R. Garra, R. Garrappa, The Prabhakar or three parameter Mittag–Leffler function: theory
and application. Communications in Nonlinear Sciences and Numerical Simulation, 2018, 56,
314-329,

Serial and Parallel Iterative Splitting Methods: Algorithms and Applications
Jürgen Geiser, J.L.Hueso, E.Martinez,, Mon 16:10 R 3.28

In the lecture, we discuss the ideas of serial and parallel iterative splitting methods. The ideas
and properties of iterative splittig methods with serial versions have been studied since recent
years. We extend the itertative splitting methods to a class of parallel versions, which allow to
reduce the computational time and keep the benefit of the higher accuracy with each iterative
step.
We present the novel parallel splitting methods, which are nowadays important to solve large
problems. While decomposing into simpler subproblems, such subproblems can be computed
independently with the different processors.
We discuss the numerical convergence of the serial and parallel iterative splitting methods.
Then, we present different numerical applications based on convection-diffusion problems to
validate the benefit of the parallel versions.

FFT-based evaluation of nonlocal terms in PDE systems
Alf Gerisch, Tue 11:05 R 1.26

Cellular adhesion or repulsion is an important aspect in many biological systems and has been
implicated in processes related the pigmentation pattern in fish, the sorting of cells in embry-
onal tissue, the invasion of healthy tissue by cancer cells and also tissue growth in bioreactors.
In PDE-type modelling of these processes this aspect is often successfully accounted for by a
solution-dependent spatially nonlocal term. The nonlocality here represents the observation
that the state of the sourrounding tissue of a cell influences its adhesive or repulsive beha-
viour. The evaluation of the nonlocal term in such models often amounts to the computational
bottleneck in numerical schemes.
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In this presentation we outline an efficient FFT-based technique for the evaluation of this
nonlocal term on one- and higher dimensional uniform grids and for spatially periodic boundary
conditions. We also show how more general boundary condition can be accomodated for by
slightly increasing the problem dimension and at a moderate increase in computational cost.
The methodology is also applicable in the case of certain iterated integrals. We finally also
discuss an application of the method on unstructured grids and/or non-box shaped spatial
domains.

Some aspects of the time integration of multidimensional parabolic problems
with mixed derivatives

Severiano González Pinto, Fri 09:20 R 3.28

We start by reviewing a few schemes based on directional splitting for the time integration of
multidimensional parabolic problems in case that mixed derivatives are present and where it
is assumed a spatial semi-discretization based on central differences. Then, we focus on un-
conditional stability aspects, particularly on W-methods based on the Approximated Matrix
Factorization (AMF) to perform the directional splitting. The linear constant coefficient prob-
lem with Homogeneous Boundary Conditions of Dirichlet type will be analyzed and a relevant
scalar test problem stemming from it, will play a relevant role in the stability analysis. The
empirical order of convergence in PDE sense of some relevant schemes will be illustrated with
a few linear test PDE problems, one of them meeting applications in Finance. It will be seen
that often the convergence order presents a stronger reduction when the boundary conditions
are time-dependent. A way to circumvent this drawback will be shown.
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for parabolic problems with mixed derivatives, Numer. Algor. 78 (2018) 957-981.
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Adaptive trust-region POD for optimal control of the Cahn-Hilliard equation
Carmen Gräßle, Michael Hinze, Jan Oke Alff, Nicolas Scharmacher, Thu 17:00 R 3.28

We consider the optimal control of a Cahn-Hilliard system in a trust-region framework. For an
efficient numerical solution, the expensive high dimensional PDE systems are replaced by re-
duced order models utilizing proper orthogonal decomposition (POD-ROM). Within the trust-
region POD (TR-POD), the accuracy of the surrogate models is controlled in the course of
the optimization. The POD modes are computed corresponding to snapshots of the governing
equations which are discretized utilizing adaptive finite elements. Different types of snapshots
and POD basis generations for the different system variables are analyzed. In the numerical
examples, the smooth as well as the double-obstacle free energy potential are considered.
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Discontinuous ODEs and graph optimization
Nicola Guglielmi, Eleonora Andreotti (L’Aquila and Torino), Dominik Edelmann and

Christian Lubich (Tuebingen), Thu 15:30 R 1.26

In this talk I will discuss some optimization methods in spectral graph theory aimed to cluster a
weighted undirected graph under certain constraints. The use of a gradient system is the main
tool in the methodology. Due to the non-negativity constraint on the weights of the graph, it
is possible that a discontinuous ODE is encountered which leads to the possibility that only a
generalized solution of the gradient system exists. This situation has to be handled accurately
in a numerical integration of the system. This is a joint work with Eleonora Andreotti (L’Aquila
and Torino), Dominik Edelmann and Christian Lubich (Tuebingen).

A Localized Reduced-Order Modeling Approach for PDEs with Bifurcating
Solutions

Max Gunzburger, Alessandro Alla, Martin Hess, Gianluigi Rozza, Annalisa Quaini,
Mon 10:40 R 3.28

Reduced-order modeling (ROM) commonly refers to the construction, based on a few solutions
(referred to as snapshots) of an expensive discretized partial differential equation (PDE), and
the subsequent application of low-dimensional discretizations of partial differential equations
(PDEs) that can be used to more efficiently treat problems in control and optimization, un-
certainty quantification, and other settings that require multiple approximate PDE solutions.
In this work, a ROM is developed and tested for the treatment of nonlinear PDEs whose solu-
tions bifurcate as input parameter values change. In such cases, the parameter domain can
be subdivided into subregions, each of which corresponds to a different branch of solutions.
Popular ROM approaches, such as proper orthogonal decomposition (POD), results in a global
low-dimensional basis that does not respect nor take advantage of the often large differences
in the PDE solutions corresponding to different subregions. Instead, in the new method, the
k-means algorithm is used to cluster snapshots so that within cluster snapshots are similar to
each other and are dissimilar to those in other clusters. This is followed by the construction
of local POD bases, one for each cluster. The method also can detect which cluster a new
parameter point belongs to, after which the local basis corresponding to that cluster is used to
determine a ROM approximation. Numerical experiments show the effectiveness of the method
both for problems for which bifurcation cause continuous and discontinuous changes in the
solution of the PDE.

A multirate implicit Euler scheme for semi-explicit DAEs of index-1:
consistency and convergence analysis

Christoph Hachtel, Andreas Bartel, Michael Günther, Mon 16:35 R 1.23

The mathematical modelling of electrical circuits often leads to large scale systems of differential
equation with components which provide a very different dynamical behaviour. These systems
can be integrated efficiently by multirate time integration schemes. Such multirate schemes
employ inherent step sizes according to the dynamical properties of the components of the
system.
In general, electrical circuits are described by differential algebraic equations. In this talk, we
will apply multirate time integration schemes to semi-explicit differential-algebraic equations of
index 1. We focus on systems where the algebraic constraints only occur in the slow changing
components. On the basis of the implicit Euler-scheme, we will point out the details of the
multirate time integration for DAEs. We will discuss different coupling approaches between
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the subsystems consisting of components with similar dynamic behaviour. For the analysis of
the integration scheme, we follow the indirect approach and write the algebraic variables as a
function of the differential variables. We will show that the order of consistency of the classical
ODE multirate scheme can be maintained under suitable assumptions. We will complete our
talk by an adaption of the proof of [1] that shows that by using a constant macro step-size the
multirate implicit Euler scheme also converges for semi-explicit DAEs of index-1.

[1] Deuflhard, P., Hairer, E., Zugck, J., One-Step and Extrapolation Methods for Differential-
Algebraic Systems. Numer. Math., 51, 1987, pp. 501-516.

Accurate and stable boundary conditions for high-order discretizations of
hyperbolic PDEs

Yiannis Hadjimichael, Mon 16:10 R 1.29

In this talk, we provide a rigorous analysis of various boundary conditions applicable to Runge–
Kutta methods for hyperbolic conservation laws. In particular, we focus on perturbed Runge–
Kutta methods that use both upwind- and downwind-biased discretizations; such methods
have been used until now only with periodic boundary conditions. Moreover, we examine the
boundary conditions under which a perturbed Runge–Kutta method coupled with a TVD spa-
tial discretization maintains the TVD property. Several examples in one- and two-dimensional
hyperbolic problems exhibit the robustness of the boundary condition treatment and the high
order of accuracy at the boundaries.

On the limit of regularized piecewise-smooth dynamical systems
Ernst Hairer, Nicola Guglielmi, Thu 14:30 R 1.26

This work deals with piecewise-smooth dynamical systems and with regularizations, where the
jump discontinuities of the vector field are smoothed out in an ε-neighbourhood by using a
continuous transition function. It addresses the following questions:

• does the solution of the regularization, for ε → 0, converge to a Filippov solution of the
discontinuous problem ?

• under which condition is the limit for ε → 0 of the regularized solution independent of
the transition function ?

Emphasis is put on the situation, where there is non-uniqueness of solutions for the discontinu-
ous problem. The results are complemented by numerical simulations.

This work is a continuation of the results in the publications

N. Guglielmi and E. Hairer, Classification of hidden dynamics in discontinuous dynamical sys-
tems. SIAM J. Appl. Dyn. Syst. 14(3) (2015) 1454–1477.

N. Guglielmi and E. Hairer, Solutions leaving a codimension-2 sliding. Nonlinear Dynamics
88(2) (2017) 1427-1439

which can be downloaded from

http://www.unige.ch/~hairer/preprints.html
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A least-squares collocation method for non-linear higher index
differential-algebraic equations

Michael Hanke, Roswitha März, Mon 14:25 R 3.28

Differential-algebraic equations (DAEs) with higher index give rise to essentially ill-posed prob-
lems. We regularize the DAEs by a least-squares collocation method. Its realization is not
much more computationally expensive than standard collocation methods used in the numer-
ical solution of ordinary differential equations and index-1 DAEs. Thus, it is much cheaper than
methods based on index reductions. In numerical experiments, this approach has displayed ex-
cellent convergence properties both for linear and non-linear DAEs. A strict convergence proof
has been given earlier for the general class of linear index-µ tractable DAEs.
The present paper is devoted to present new results about the convergence of this least-squares
collocation method and a Gauss-Newton scheme for non-linear DAEs under rather general
conditions

Domain decomposition and parabolic problems – a time integrator approach
Eskil Hansen, Monika Eisenmann, Mon 11:30 R 3.28

Domain decomposition based schemes allow the usage of parallel and distributed hardware,
making them well-suited for discretization of time dependent PDEs in general and parabolic
equations in particular. In this talk, we will review the somewhat overlooked possibility of
introducing the domain decomposition approach directly into the temporal discretization [2].
We will outline a convergence analysis [1] for these domain decomposition based time integrators
for two standard families of nonlinear parabolic equations, namely, the parabolic p-Laplace and
the porous medium type equations.
The analysis is conducted by first casting the domain decomposition procedure into a new
variational framework. The time integration of a nonlinear parabolic equation can then be
interpreted as an operator splitting scheme applied to an abstract evolution equation governed
by a maximal dissipative vector field. By utilizing this abstract setting, we prove temporal
convergence for the most common choices of domain decomposition based integrators. We con-
clude with a few numerical experiments.

References

1) M. Eisenmann and E. Hansen, Convergence analysis of domain decomposition based time integ-
rators for degenerate parabolic equations, arXiv:1708.01479.

2) T.P. Mathew, P.L. Polyakov, G. Russo and J. Wang, Domain decomposition operator splittings
for the solution of parabolic equations, SIAM J. Sci. Comput. 19 (1998) 912–932.

Three Lie group DAE time integration methods tested on a Cosserat rod model
Stefan Hante, Martin Arnold, Wed 10:30 R 1.26

We will consider three Lie group DAE time integration methods: Firstly, the generalized-α Lie
group method, which slowly gains popularity in multi-body simulation, secondly the BLieDF
Lie group method, which is a recently developed multistep method based on the popular BDF
methods and lastly a variational integrator which is a Lie group analogon to the well-known
SHAKE and RATTLE integration schemes.
All three Lie group DAE time integrators are implemented in Fortran and are applied to a
nontrivial constrained Cosserat rod model in order to compare performance, accuracy and
energy behaviour.
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On Strong Stability Preserving time stepping methods
Inmaculada Higueras, Wed 10:55 R 3.28

During the last decades, the study of Strong Stability Preserving (SSP) properties for different
kinds of time-stepping schemes has been an active research area. SSP methods aim at preserving
qualitative properties of the exact solution (e.g., monotonicity, contractivity, positivity, discrete
maximum principles, etc.), in general, under step size restrictions. The basic assumption is the
numerical preservation of these properties by the explicit Euler method.
However, for some problems, the performance of SSP and non-SSP schemes is quite similar.
On the other hand, for some other problems, SSP methods preserve qualitative properties even
though the explicit Euler does not preserve them.
In this talk we give an overview on SSP methods trying to clarify some issues on this topic.

The use of time series filters in numerical instability control
Adrian Hill,

The use of the standard time series filters of signal processing to control numerical instability
is investigated. Two main categories of filter are considered: (i) finite impulse response (FIR
or non-recursive) filters, e.g. the Gragg filter in the Gragg-Bulirsch-Stoer Method, and (ii)
infinite impulse response (IIR or recursive) filters, e.g. the discrete Butterworth filter. The
known properties of such filters are numerically reinterpreted as order preservation, approximate
energy preservation, and the filtering out of oscillatory unstable components. The design and
construction of filters is considered. Computations are presented for both stiff and energy
conserving problems. Two main types of filtering strategy are considered: (a) filtering after
the main computation is complete (passive filtering) and (b) intermittent filtering, with filtered
solutions fed back into the main computation (active filtering).

From Low-Rank to Data-Driven Gramian-Based Model Reduction
Christian Himpe, Peter Benner, Thu 14:30 R 3.28

For input-output systems, system Gramian matrices are a long established tool to quantify
the properties controllability and observability. A range of associated Gramian-based model
reduction methods has been developed over the last decades utilizing those attributes, starting
with the classic balanced truncation for linear systems. Typically, these methods are targeted
towards systems with a certain structure, such as bilinear, quadratic-bilinear or polynomial,
which is exploited to efficiently obtain reduced order models using low-rank truncated Grami-
ans. Yet, some classes of systems have complex structures that (currently) cannot be reduced
by such an ansatz, for example general nonlinear control-affine systems.
For nonlinear input-output systems, system Gramian matrices can also be defined based on con-
trollability and observability, yet their numerical computation is usually infeasible. A comprom-
ise between computability and Gramian-based model reduction for nonlinear systems is a data-
driven computation, that incorporates nonlinear behavior inside an attractor and reproduces
algebraic results for linear systems. These so-called empirical Gramians extend Gramian-based
model reduction methods to otherwise intangible input-output systems. Their computation is
based on simulated trajectories for systematic perturbations of the steady-state configuration.
More recently, the empirical cross Gramian was enhanced to low-rank computation; we will
demonstrate low-rank computation of the empirical controllability and observability Gramians.
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Adaptivity in model order reduction with proper orthogonal decomposition
Michael Hinze, Carmen Gräßle, Thu 10:40 R 1.26

A crucial challenge within snapshot-based POD model order reduction for time-dependent sys-
tems lies in the input dependency. In the ’offline phase’, the POD basis is computed from
snapshot data obtained by solving the high-fidelity model at several time instances. If a dy-
namical structure is not captured by the snapshots, this feature will be missing in the ROM
solution. Thus, the quality of the POD approximation can only ever be as good as the input
material. In this sense, the accuracy of the POD surrogate solution is restricted by how well the
snapshots represent the underlying dynamical system. If one restricts the snapshot sampling
process to uniform and static discretizations, this may lead to very fine resolutions and thus
large-scale systems which are expensive to solve or even can not be realized numerically. There-
fore, offline adaptation strategies are introduced which aim to filter out the key dynamics. On
the one hand, snapshot location strategies detect suitable time instances at which the snap-
shots shall be generated. On the other hand, adaptivity with respect to space enables us to
resolve important structures within the spatial domain. Motivated from an infinite-dimensional
perspective, we explain how POD in Hilbert spaces can be implemented. The advantage of this
approach is that it only requires the snapshots to lie in a common Hilbert space. This results in
a great flexibility concerning the actual discretization technique, such that we even can consider
r-adaptive snapshots or a blend of snapshots stemming from different discretization methods.
Moreover, in the context of optimal control problems adaptive strategies are crucial in order
to adjust the POD model according to the current optimization iterate. In this talk, recent
results in this direction are discussed and illustrated by numerical experiments.

Multivalue–multistage methods for the numerical solution of the nonlinear
Volterra integro-differential equations

Gholam Reza Hojjati, Ali Abdi, Hassan Mahdi, Mon 16:10 R 1.27

We are going to design a numerical scheme based on the general linear methods (GLMs) for the
numerical solution of a class of Volterra integro-differential equations (VIDEs). In this scheme,
we construct a special class of GLMs for ODEs and combine them with Gregory quadrature rule
to approximate the integral term of the underlying VIDE. The convergence and linear stability
properties are analyzed. Implementation of the constructed methods on the well-known VIDEs
confirms their efficiency.

Keywords: Volterra integro-differential equations, General linear methods, Gregory quadrat-
ure rule, Convergence and stability analysis.

Positivity and SSP by implicit numerical methods for ODEs and DAEs
Zoltán Horváth, Volker Mehrmann, Wed 10:05 R 3.28

Theoretical settings and implementations of time stepping methods for ODEs that guarantee
the positivity and/or SSP property have required the same property for the Explicit Euler
method. In this talk we shall present theoretical and experimental results on cases when,
instead of that for the Explicit Euler method, condition on the Implicit Euler method is applied
for implicit numerical methods. Also, we shall show how the presented results apply for DAEs.
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Rational finite differences method based on the barycentric interpolants for
ODEs

Seyyed Ahmad Hosseini, Ali Abdi, Helmut Podhaisky, Tue 10:40 R 1.27

Stiff systems of ODEs arise widely in the mathematical modeling of physical and biological
phenomena. In this study, we first employ the linear barycentric rational finite differences
method for the numerical solution of stiff systems of ODEs which is derived by exactly differen-
tiating the linear barycentric rational interpolant. The linear stability behavior of the proposed
method with respect to the standard test problem of Dahlquist is also investigated. In addition,
for obtaining the methods with more desirable stability properties in this class, the adaptive
version of such methods is introduced. The efficiency and capability of the introduced methods
are verified by solving some well-known stiff problems.

On Multistep Stabilizing Correction Splitting Methods with Applications to the
Heston Model

Karel in ’t Hout, Willem Hundsdorfer, Thu 10:40 R 3.28

In this talk we consider splitting methods based on linear multistep methods and stabilizing
corrections. To enhance the stability of the methods, we employ an idea of Bruno & Cubillos
(2016) who combine a high-order extrapolation formula for the explicit term with a formula of
one order lower for the implicit terms. Several examples of the obtained multistep stabilizing
correction methods are presented, and results on linear stability and convergence are derived.
The methods are tested in the application to the well-known Heston model arising in financial
mathematics and are found to be competitive with well-established one-step splitting methods
from the literature.

Construction of Strong Stability Preserving Implicit-Explicit General Linear
Methods

Giuseppe Izzo, Zdzislaw Jackiewicz, Thu 10:40 R 1.23

Many practical problems in science and engineering are modeled by large systems of ordinary
differential equations (ODEs) which arise from space discretization of partial differential equa-
tions (PDEs). For such differential systems there are often natural splittings of the right hand
sides into two parts, so they can be written in the form{

y′(t) = f
(
y(t)

)
+ g
(
y(t)

)
, t ∈ [t0, T ],

y(t0) = y0,

y0 ∈ Rm, f : Rm → Rm, g : Rm → Rm, where f(y) represents the non-stiff processes, for ex-
ample advection, and g(y) represents stiff processes, for example diffusion or chemical reaction,
in semidiscretization of advection-diffusion-reaction equations. For efficient integration of such
kind of systems we consider the class of implicit-explicit (IMEX) methods, where the non-stiff
part f(y) is integrated by an explicit numerical scheme, and the stiff part g(y) is integrated by
an implicit numerical scheme. After the investigation of IMEX Runge-Kutta (RK) methods
[1], we consider IMEX General Linear Methods (GLMs) to obtain methods where the explicit
part has the so-called strong stability preserving (SSP) property [2, 3, 4], and the implicit part
of the method is A-, or L-stable. Since the good properties of the explicit and implicit part do
not ensure good performances when the two schemes interact with each other, we also analyze
the absolute stability of the overall IMEX method to obtain large regions of combined stability.
We provide examples of IMEX GLMs with order p ≤ 4 and high stage order, q = p, and report
the results of numerical experiments based on the solution of several large stiff problems, that
confirm that the proposed methods have good performances.
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Linearly Implicit Rosenbrock-Wanner-Type Methods with Non-Exact Jacobian
for the Numerical Solution of Differential-Algebraic Equations

Tim Jax, Wed 09:40 R 1.26

Solving differential-algebraic equations (DAEs) effectively is an ongoing topic in applied math-
ematics. In this context, especially regarding the computation of large networks in different
fields of practical interest leads to extensive systems that must be evaluated efficiently. Due
to given stiffness properties of DAEs, time-integration of such problems by linearly implicit
Runge-Kutta methods in the form of Rosenbrock-Wanner (ROW) schemes is generally con-
venient. Compared to fully implicit schemes, they are easy to implement and avoid having to
solve non-linear equations by including Jacobian information within their formulation. How-
ever, particularly when having to deal with large coupled systems, computing the exact Jacobian
is costly and, therefore, proves to be a considerable drawback.
In this talk, concepts of Rosenbrock-Wanner-Type methods will be shown that allow for non-
exact Jacobian entries with respect to differential and algebraic parts given when computing
semi-explicit DAEs of index-1, thus enabling to apply versatile strategies that reduce compu-
tational efforts. Order conditions for realizing these methods will be presented, introducing an
approach inspired by the works of Steihaug and Wolfbrandt [3] as well as Roche [2] that allows
for their general derivation using an algebraic theory based on rooted trees. In this context,
strategies described in [1] will be enhanced.
[1] T. Jax, G. Steinebach, Generalized ROW-Type Methods for Solving Semi-Explicit DAEs of
Index-1, J. Comput. Appl. Math. 316 (2017) 213-228
[2] M. Roche, Rosenbrock Methods for Differential Algebraic Equations, Numer. Math. 52
(1988) 45-63
[3] T. Steihaug, A. Wolfbrandt, An Attempt to Avoid Exact Jacobian and Nonlinear Equations
in the Numerical Solution of Stiff Differential Equations, Math. Comput. 33 (1979) 521-534

Hidden Dynamics
Michael Jeffrey, Thu 14:00 R 1.26

In the last few years we have discovered a number of “illusions of noise” induced by the presence
of discontinuities (e.g. switches, decisions, jumps in physical constants) in dynamical systems.
When a system switches abruptly between two or more modes of behaviour, it can begin
evolving along the discontinuity threshold between modes — so-called sliding dynamics. Such
behaviour is usually highly robust, but it turns out that the tight constraint of the variables
involved in sliding motion can unleash a frustration on other variables that makes them wild
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and unpredictable. Their erratic variation and sensitivity to modelling assumptions creates the
illusion of underlying noise when in fact none is present.
These kinds of behaviour are changing the way we understand the dynamics that occurs at the
thresholds between different regimes of behaviour. Most importantly they have implications
for our very notion of determinism in systems that can switch between different modes. Hidden
dynamics provides a way to open up the sites of discontinuity, and explore how far we can
extend determinism. There are limits to predictability of systems as they transition between
regimes, and these can manifest as arbitrary pauses in motion, or spurious illusions of noise.
The most simple and striking illusion of noise is called “jitter”. If two investors trading stocks
in a company seem to reach a steady trading level, jitter can send the company value into
unexpected erratic fluctuations. If the supply and demand of a commodity, such as oil, are
regulated to a steady level, jitter can cause the commodity price to become volatile and unstable.
The basic idea can be applied to mechanical, fluid flow, electronic, or other physical systems.
In this phenomenon the devil really is in the details. A sliding mode is a dynamical solution
that evolves perfectly along the threshold where a discontinuity occurs in a set of differential
equations. The notion of stability of a system to perturbations at a discontinuity is not a
standard one in dynamical systems, so the study of real world non-ideal switching has been a
long running challenge. We now understand how the tiniest non-idealities in the description
of a discontinuity can manifest themselves as enormous large scale sensitivity. Depending on
the application the true system might glide smoothly along the threshold (e.g. in mechanical
sticking), or it might chatter along the threshold (e.g. in electronic variable structure control or
thermostatic switching). There may be factors of time delay, hysteresis, or stochasticity in the
switching process. Any of these can have a huge affect on variable not constrained by the sliding
mode, but a combination of Filippov’s inclusions, recent piecewise smooth dynamical theory,
and singular perturbations, reveal that certain geometry constraints the erratic outcomes.
A single switch or discontinuity is very robust to non-idealities, which is part of the reason why
sliding modes have been so successfully applied in electronic and mechanical control, but also
in ecology, physiology, and a growing range of life science modelling. Two or more switches or
discontinuities, however, become highly unstable to such perturbations, allowing them to vastly
affect the outcome. Their effects can be understood within a range of behaviours known as
“hidden dynamics” associated with switching. A coincidence of switches creates a sensitivity
responsible for erratic or ‘jittery’ dynamics, which creates the illusion of underlying noise.

Generalized Adams methods to solve fractional differential equations with delay
Xingzhou Jiang, Jingjun Zhao, Yang Xu, Mon 14:50 R 1.23

In this talk, we use the fractional convolution quadrature based on generalized Adams methods
to get a numerical solvers for fractional differential equations with delay. The convergence of the
method is proved by the inverse of matrix. We also get the numerical stability region based on
generalized Adams methods and Adams methods. The linear stability properties of generalized
Adams methods when applied to linear fractional delay differential equation is studied. The
numerical experiments confirm the valuable properties of this approach.

A discrete fractional approach for modelling dissipative mechanical systems
Fernando Jimenez, Sina Ober-Blöbaum, Tue 14:00 R 3.28

This talk is about the modelling of dissipative systems using fractional derivatives and also
about some particular integrators obtained from their discretisation. We put our emphasis in
obtaining numerical integrators via the discretisation of a restricted variational principle that
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provides the dynamical equations of dissipative mechanical systems with linear damping. We
shall display their numerical behaviour and show their superior performance when approxim-
ating the dynamics and the energy decreasing of these systems.

A Numerical Algorithm for Approximation and Analysis of Burgers’-Fisher
Equation

Ram Jiwari,

In this talk article, the authors proposed a numerical algorithm for approximation and analysis
of Burgers’-Fisher equation ∂u

∂t
− ∂2u

∂x2
+au∂u

∂x
+ bu(1−u) = 0 . Existence and uniqueness of weak

solution, a priori error estimates of semi-discrete solution in L∞(0, T ;L2(Ω)) norm are proved.
Nonlinearity of the problem is handled by lagging it to previous known level. The scheme is
found to be convergent. Finally, numerical experiments are performed on some examples to
demonstrate the effectiveness of the scheme. The proposed scheme found to be fast, easy and
accurate.

The method of (uncountably many) characteristics
David Ketcheson, Randall J. LeVeque, Jithin George, Fri 10:10 R 3.28

The method of characteristics is a standard technique for solving hyperbolic PDEs with constant
or piecewise-constant coefficients. In the presence of more complicated spatial variation of
coefficients, the method appears impractical since the number of characteristics arriving at any
given point is uncountable. Problems of this kind arise naturally for wave propagation in the
atmosphere and the ocean, for example. We present a numerical method for dealing with this
infinity of characteristics and demonstrate an application to shoaling of ocean waves. Some
interesting connections to other areas of mathematics will also be presented.

Numerical method for solving a fractional order HIV model arising from
optimal control

Hossein Kheiri Estiar, Mohsen Jafari, Mon 15:15 R 1.29

In this paper, A fractional order HIV model with both virus-to-cell and cell-to-cell transmissions
is considered. We incorporate into the model a combined antiretroviral (cARV) drug , as time
dependent control, aimed at controlling the spread of HIV infection, and formulate an optimal
control problem with free terminal time. Necessary conditions for a state/control/terminal
time triplet to be optimal are obtained. We present a general formulation for a FOCP, in
which the state and co-state equations are given in terms of the left fractional derivatives. We
develop the Forward-Backward sweep method (FBSM) and the Adapted Forward-Backward
Sweep method (AFBSM) using the Adams-type predictor-corrector method to solve the FOCP
with fixed and free terminal time, respectively. Numerical examples show the efficiency of the
proposed method.
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Numerical tests with AMF methods
Marcel Klinge, Domingo Hernández-Abreu, Rüdiger Weiner, Mon 16:35 R 3.28

In this talk, we consider numerical methods for the solution of stiff initial value problems

y′(t) = f(t, y(t)), y(t0) = y0 ∈ Rn, t ∈ [t0, te] . (1)

Implicit integration methods require the solution of linear systems, which can be very expensive
for high dimensional problems (1). One possibility is to apply an Approximate Matrix Factor-
ization (AMF) technique. The AMF approach uses some splitting of the right-hand side of (1)
and exploits special structures of the corresponding Jacobians. We consider linearly-implicit
one-step W-methods and two-step W-methods with AMF. Furthermore, we discuss AMF peer
methods, which require the application of Newton iteration. We compare these schemes in
numerical experiments on a linear model.
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Split-explicit time integration methods for finite element discretizations
Oswald Knoth, Katrin Lubashevksy, Tue 11:30 R 1.26

There is a new interest in finite element methods for solving the equations in numerical weather
forecasting. In contrast to finite difference and finite volume methods explicit time integration
methods are hampered by non-diagonal mass matrices in front of the time derivatives. We will
compare different mixed finite and discontinuous Galerkin methods for the two-dimensional
linear Boussinesq approximation in the context of split-explicit time integration schemes. Espe-
cially different lumping procedures are investigated which replaces non-diagonal mass matrices
by simple diagonal block-diagonal matrices.

Fitted Finite Volume Method for Optimal Portfolio in a Exponential Utility
Regime-Switching Model

Miglena Koleva, Tihomir Gyulov, Lubin Vulkov, Tue 11:55 R 1.29

The focus of the present work is a system of weakly coupled degenerate semi-linear parabolic
equations of optimal portfolio in a regime-switching with exponential utility function. We
extend this model, developing additional problems - IBPM and IWPM for solving indifference
buyer’s and writer’s prices, respectively. Further, we establish comparison principle for the
first model and on this base we prove a maximum principle for IBPM and IWPM. The above
models are solved numerically by fitted finite volume method. We prove the discrete maximum
principle and convergence of the numerical solutions in maximal norm. Numerical results,
illustrating the theoretical statements are presented and discussed.

42



Modified Patankar-Runge-Kutta schemes for
Advection-Diffusion-Production-Destruction Systems

Stefan Kopecz, Andreas Meister, Thu 11:55 R 1.23

Modified Patankar-Runge-Kutta (MPRK) schemes are numerical methods for the solution of
positive and conservative production-destruction systems. They adapt explicit Runge-Kutta
schemes in a way to ensure positivity and conservation of the numerical approximation irre-
spective of the chosen time step size.
In this talk we present an investigation of MPRK schemes in the context of convection-diffusion-
reaction equations with source terms of production-destruction type. The time-splitting ap-
proach is used to integrate the reaction terms with MPRK schemes. In particular, the efficiency
of MPRK schemes in case of stiff reactions will be discussed.

Efficient Numerical Schemes for Highly Oscillatory Klein-Gordon and Dirac
type Equations

Patrick Krämer, Katharina Schratz, Mon 17:25 R 1.29

Klein–Gordon and Dirac equations physically describe the motion of relativistic particles. The
construction of efficient numerical time integration schemes for solving these equations in the
nonrelativistic limit regime, i.e. when the speed of light c formally tends to infinity, is nu-
merically very delicate, as the solution becomes highly-oscillatory in time. In order to resolve
the oscillations, standard time integrations schemes require severe restrictions on the time step
τ ∼ c−2 depending on the small parameter c−2 which leads to high computational costs.
In my talk, I will present numerical techniques based on [1] for efficiently solving these highly os-
cillatory systems without any time step restriction by exploiting their inherent time-oscillatory
structure. We carry out the construction of these schemes by filtering out the highly oscillatory
phases (in time) explicitly, which allows us to break down the numerical task to solving slowly
oscillatory Schrödinger-type systems.
References
[1] S. Baumstark, E. Faou and K. Schratz, Uniformly accurate exponential-type integrators
for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting, Math.
Comp. 87(2018), pp. 1227–1254.

Doubly quasi-consistent fixed-stepsize implicit two-step peer methods for stiff
ordinary differential equations

Gennady Kulikov, Rüdiger Weiner, Tue 10:40 R 1.23

Recently, Kulikov [1] presented the idea of double quasi-consistency, which facilitates the global
error estimation and control, considerably. More precisely, a local error control implemented in
such methods plays a part of global error control at the same time. Unfortunately, the property
of double quasi-consistency is unavailable in the classical numerical integration formulas of
Runge-Kutta or multistep type, including Nordsieck methods as well. That is why Kulikov and
Weiner [2, 3, 4] extended their search for doubly quasi-consistent numerical integration tools to
general linear methods and constructed the first formulas of such sort within explicit parallel
peer schemes.
The focus of the present research is on accurate numerical integration formulas for treating stiff
ODEs, which often arise in practice and for which explicit methods are shown to be ineffective.
In this talk, we make the first step towards an accurate and efficient numerical solution of
stiff ODEs and prove existence of implicit stepping formulas. We fulfill our investigation of
double quasi-consistency within the family of fixed-stepsize implicit two-step peer schemes
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and construct two methods of convergence orders 3 and 4, which possess excellent stability
properties. Then, these methods are equipped with an efficient local (and, hence, global) error
estimation mechanism based on the embedded method approach, whose quality is assessed in
numerical experiments with both nonstiff and stiff test problems with known solutions.
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Numerical solution of the neural field equation in the presence of random
disturbance

Maria Kulikova, Pedro Lima, Gennady Kulikov, Mon 16:35 R 1.26

This paper aims at presenting an efficient and accurate numerical method for treating both
deterministic- and stochastic-type neural field equations (NFEs) in the presence of external
stimuli input (or without it) [1]. The devised numerical integration means belongs to the class
of Galerkin-type spectral approximations grounded mathematically in [2, Proposition 2.1.10].
The particular effort is focused on an efficient practical implementation of the novel technique
because of the partial integro-differential fashion of the NFEs, which are to be integrated,
numerically. Our method is implemented in MATLAB. Its practical performance and efficiency
is investigated on three variants of a particular NFE model with external stimuli inputs. We
study both the deterministic case of the mentioned model and its stochastic counterpart to
observe important differences in the solution behavior. First, we observe only stable one-bump
solutions in the deterministic neural field scenario, which, in general, will be preserved in our
stochastic NFE scenario if the level of random disturbance is sufficiently small. Second, if the
area of the external stimuli is large enough and exceeds the size of the bump, considerably,
the stochastic neural field solution’s behavior may change dramatically and expose also two-
and three-bump patterns. In addition, we show that strong random disturbances, which may
occur in neural fields, fully alter the behavior of the deterministic NFE solution and allow
multi-bump (and even periodic-type) solutions to appear in all variants of the stochastic NFE
model studied in this paper.
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Haar wavelet quasilinearization approach for numerical solution of Burger type
equation via Lie group method
Vikas Kumar, Tue 11:55 R 3.28

In this talk, an initial and boundary value problem for Burgers type equation is considered.
With the help of Lie group approach, initial and boundary value problem for Burgers type equa-
tion reduced to an initial value problem for nonlinear ordinary differential equations. Moreover,
the ordinary differential equations are solved to obtain soliton solutions. Further, Haar wavelet
quasilinearization approach is applied to systems of ordinary differential equations for con-
structing numerical solutions of Burgers type equation. Numerical solutions are computed,
and accuracy of numerical scheme is assessed by applying the scheme half mesh principal to
calculate maximum errors.

IMEX-Peer Methods Based on Extrapolation
Jens Lang, Willem Hundsdorfer, Wed 09:40 R 3.28

In [1], we have investigated a new class of implicit–explicit (IMEX) two-step methods of Peer
type for systems of ordinary differential equations with both non-stiff and stiff parts included
in the source term. An extrapolation approach based on already computed stage values is
applied to construct IMEX methods with favourable stability properties. For equidistant nodes,
IMEX-Peer methods are equivalent to the well known IMEX-BDF methods. New optimised
IMEX-Peer methods with general nodes of order p = 2, 3, 4, are given as result of a search
algorithm carefully designed to balance the size of the stability regions and the extrapolation
errors. Numerical experiments and a comparison to other implicit–explicit methods will be
presented.

[1] J. Lang, W. Hundsdorfer
Extrapolation-based implicit-explicit Peer methods with optimised stability regions,
J. Comput. Phys., Vol. 337, pp. 203-215, 2017.

SPDE simulation on spheres
Annika Lang, Peter Creasey, Tue 15:30 R 1.26

The simulation of solutions to stochastic partial differential equations requires besides discretiz-
ation in space and time the approximation of the driving noise. This problem can be transfered
to the simulation of a sequence of random fields on the underlying domain. In this talk I will
concentrate on domains that are spheres and review some recent developments.

Exotic aromatic B-series for the order conditions of the long time numerical
integration of ergodic stochastic differential equations.

Adrien Laurent, Gilles Vilmart, Tue 17:30 R 1.26

We introduce a new algebraic framework based on aromatic trees and Butcher-series for the
systematic study of the accuracy of numerical integrators for sampling the invariant measure
of a class of ergodic stochastic differential equations.
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Effective dynamics for non-reversible stochastic differential equations
Frederic Legoll, Tue 16:30 R 1.26

Coarse-graining is central to reducing dimensionality in molecular dynamics, and is typically
characterized by a mapping which projects the full state of the system to a smaller class of
variables. While extensive literature has been devoted to coarse-graining starting from revers-
ible systems, not much is known in the non-reversible setting. Starting with a non-reversible
dynamics, we study an effective dynamics which approximates the (non-closed) projected dy-
namics. Under fairly weak conditions on the system, we prove error bounds on the trajectorial
error between the projected and the effective dynamics. In addition to extending existing res-
ults to the non-reversible setting, our error estimates also indicate that the notion of mean force
motivated by this effective dynamics is a good one.
Joint work with T. Lelièvre and U. Sharma (ENPC).

Linearly implicit time integration of semilinear wave equations with dynamic
boundary conditions

Jan Leibold, Marlis Hochbruck, Mon 16:35 R 1.29

In this talk we present a linearly implicit time integration scheme for semilinear wave equations
with a non-stiff nonlinearity. Such methods treat the (stiff) linear part of the differential
equation implicitly and the nonlinear part explicitly. Thus they require only the solution of
one linear system of equations in each time step. We investigate the stability of the scheme
and show a second order error bound.
As an application, we consider a finite element discretization of a semilinear acoustic wave
equation with dynamic boundary conditions as in [2]. Based on the analysis in [1] we derive
a full discretization error bound. Afterwards we present numerical experiments which show
that the linearly implicit method is competitive to standard time integration methods like the
Crank-Nicolson or the leapfrog scheme.
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Volume preserving diffeomorphisms and the Kahan method
Lu Li, Elena Celledoni, Wed 09:40 R 1.27

Kahan’s method is a special numerical integration method that works very well for certain
quadratic differential equations. A modified measure and one or several modified integrals are
preserved by this method for some special classes of quadratic vector fields. In this talk, we
apply Kahan’s method to a general vector filed F and give a general condition on its Jacobian
matrix F ′ guaranteeing that a modified measure is preserved. Connections to the discretization
of the group of volume preserving diffeomorphisms arising in certain classes of partial differential
equations will be discussed.
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Superconvergence of the structure-preserving trigonometric collocation methods
for solving the nonlinear Hamiltonian wave equations

Changying Liu, Kai Liu, Xinyuan Wu, Wed 10:55 R 1.27

This work is devoted to the error estimate of the trigonometric collocation time integrators for
solving the nonlinear Hamiltonian wave equations We propose the trigonometric collocation
time integrators, which could take full advantage of the oscillation introduced by the spatial
discretisation. The superconvergence of the trigonometric collocation time integrators is rig-
orously analysed. Moreover, we also prove that the trigonometric collocation time integrators
could be symmetric and symplectic with suitable collocation points. Numerical experiments
verify our theoretical analysis results.

Numerical simulation of rf-SQUIDs
Bernhard Maier, Marlis Hochbruck, Marvin Müller, Carsten Rockstuhl, Mon 17:00 R 1.29

We study the interaction of electromagnetic waves with rf-SQUIDs aligned on a thin film [1].
This yields a system of Maxwell’s equations coupled with an anharmonic oscillator via a jump
condition for the normal derivative at the interface. Since our main interest is the calculation
of the reflection and transmission coefficients of the film, we introduce transparent boundary
conditions [2], which drastically reduce the computational effort. In fact, the spatial resolution
of our numerical examples does not affect the computational cost.
In this talk, we show well-posedness using [3] for a first order reformulation of this system. We
further discuss the discretization with finite elements in space and the Crank-Nicolson method
in time and prove convergence results. Finally, we confirm these results presenting numerical
examples.
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Positive and mass-conservative integrators for biochemical systems
Angela Martiradonna, G. Colonna (CNR-IMIP, Bari, Italy), F. Diele (CNR-IAC, Bari,

Italy), Tue 15:30 R 3.28

The state variables involved in a biochemical process are non-negative, since they model the
concentration of chemical elements and compounds. In addition, biochemical systems are mass-
conservative, in the sense that the total amount of any chemical element involved in the process
does not change over time. The numerical schemes for the integration of this type of equations
must be unconditionally positive and mass-conservative, if they are to produce meaningful
results.
In this talk I will give an overview of the existing numerical schemes for biochemical systems in
the recent literature [1, 4]. Then, I will propose a novel explicit scheme based on the composition
of the (non-Newtonian) geometric Euler scheme in [2] with a non-standard positive integrator
[3].
This work has been supported by GNCS-INDAM.
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Questions concerning differential-algebraic operators
Roswitha März, Mon 14:00 R 3.28

The nature of differential-algebraic operators (DA operators) is constitutive for the direct treat-
ment of differential-algebraic equations (DAEs) in function spaces. In particular, respective
characteristics of the involved DA operators are responsible for both the effectiveness and the
failure of direct discretizations of DAEs. In the first part we will concentrate on linear first-
order higher-index DA operators acting in most natural Hilbert spaces. We provide their basic
characteristics as well as the related background for the overdetermined least-squares polyno-
mial collocation to work well. Respective numerical experiments are clearly promising. The
inverse of an injective first-order higher-index DA operator and as the case may be the inverse
of a injective composed DA operator involves again a DA-operator, but now it is a higher-order
one. Higher-order DA operators arise also in different application. In our second part we will
address characteristics of linear higher-order DA operators

Adaptive time-space algorithms for the simulation of multi-scale reaction waves
with error control

Marc Massot, Fri 12:10 R 3.28

Numerical simulations of multi-scale phenomena are commonly used for modeling purposes in
many applications such as combustion, chemical vapor deposition, or air pollution modeling.
These models raise several difficulties created by the high number of unknowns, the wide range
of temporal scales due to detailed chemical kinetic mechanisms, as well as steep spatial gradients
associated with very localized fronts of high chemical activity. Furthermore, a natural stumbling
block to perform 3D simulations with all scales resolution is either the unreasonably small
time step due to stability requirements or the unreasonable memory requirements for implicit
methods. In this work, we introduce a new resolution strategy for multi-scale reaction waves
based mainly on time operator splitting and space adaptive multiresolution. It considers high
order time integration methods for reaction, diffusion and convection problems, in order to build
a time operator splitting scheme that exploits efficiently the special features of each problem.
Based on theoretical studies of numerical analysis, such a strategy leads to a splitting time
step which is not restricted neither by fast scales in the source term nor by restrictive stability
limits of diffusive or convective steps, but only by the physics of the phenomenon. Moreover,
this splitting time step is dynamically adapted taking into account a posteriori error estimates,
carefully computed by a second embedded and economic splitting method. The main goal is
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then to perform computationally very efficient as well as accurate in time and space simulations
of the complete dynamics of multi-scale phenomena under study, considering large simulation
domains with conventional computing resources and splitting time steps purely dictated by the
physics of the phenomenon and not by any stability constraints associated with mesh size or
source time scales. Applications will be presented in the fields of combustion waves and plasma
discharges dynamics. We will also briefly address the question of parallelism as well as the
coupling with a hydrodynamics solver.

Figure 1: Left: Simulation of scroll waves using Belousov-Zhabotinsky model with detailed
mechanism in 3D, Right: Simulation of the interaction of a premixed flame front with a toroidal
vortex in 3D and mesh adaptation (Ph.D. M. Duarte).
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hommage à Michelle Schatzman, Vol. 3, No. 3 (2011) 1-31

Regularization and numerical solution of hybrid differential-algebraic equations
Volker Mehrmann, Peter Kunkel, Thu 15:00 R 1.26

The solvability and regularity of hybrid differential-algebraic systems (DAEs) is studied, and
classical stability estimates are extended to hybrid DAE systems. Different reasons for non-
regularity are discussed and appropriate regularization techniques are presented. This includes
a generalization of Filippov regularization in the case of so-called chattering. The results are
illustrated by several numerical examples

Goal oriented time adaptivity using local error estimates
Peter Meisrimel, Philipp Birken, Tue 11:05 R 1.23

When solving ODEs or PDEs, one is not always interested in the solution, but rather a quantity
of interest (QoI) derived from it. Starting from an IVP (semidiscretized PDE) with solution
u(t), we consider QoIs of the form

J(u) =

∫ T

0

j(t,u(t)) dt

with j : [0, T ]× Rn → R. Examples for this are the average energy production of a turbine or
the drag coefficient for a vehicle.
The standard approach for controlling the error in the QoI is the dual-weighted residual method
[1]. To obtain an estimate the error in the QoI, this method requires solving the given ODE
(PDE) forward in time and its adjoint problem backwards in time, multiple times each, to reach
a desired precision.
An alternative approach is to use time-adaptive schemes based on local error estimates [2],
which require only one forward solve, but give no estimate of J(u).
We propose a new, goal oriented and adaptive method [3] based on local error estimates. Taking
the local error approach, we determine timesteps using only the quantities that are relevant
for J(u). Our error estimate consists of local error estimates in j(t,u) and estimates of a
quadrature approximation Jh ≈ J . This gives us a new easy to implement timestep controller.
In the talk, we will present results on convergence, order of convergence and necessary require-
ments for these. We outline a performance analysis of the new method. In numerical test,
we verify our results, show strengths and weaknesses of the method and compare it to the
dual-weighted residual method and classical time-adaptivity based on local error estimates.
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Modified Patankar-Runge-Kutta Schemes for Conservative
Production-Destruction Equations

Andreas Meister, Stefan Kopecz, Thu 09:20 R 3.28

Modified Patankar-Runge-Kutta (MPRK) schemes are numerical methods for the solution of
positive and conservative production-destruction systems. They adapt explicit Runge-Kutta
schemes in a way to ensure positivity and conservation irrespective of the time step size. With
the talk we introduce a general definition of MPRK schemes and present a thorough investiga-
tion of necessary as well as sufficient conditions to derive first, second and third order accurate
MPRK schemes. The theoretical results will be confirmed by numerical experiments in which
MPRK schemes are applied to solve non-stiff and stiff systems of ordinary differential equations.

BDF and Newmark-Type Index-2 and Index-1 Integration Schemes for
Constrained Mechanical Systems

Tobias Meyer, Pu Li, Bernhard Schweizer, Wed 10:55 R 1.26

Various methods for solving DAE systems, e.g. constrained mechanical systems, are known
from literature. Here, an alternative approach is presented using intermediate time points.
The idea of the method is inspired by a co-simulation technique recently published in [1]. The
approach is very general and can basically be applied for arbitrary DAE systems (mechanical or
non-mechanical DAE systems with higher-index). In this talk, implementations of this approach
are presented for BDF and Newmark-type integrator schemes. We discuss index-2 formulations
with one intermediate time point and index-1 implementations based on two intermediate time
points. A direct application of the approach for BDF or Newmark-type integrators yields a
system of discretized equations with larger dimensions. Roughly speaking, the system increases
by factor 2 for the index-2 and by factor 3 in case of the index-1 formulation. It is possible
to reduce the size of the discretized DAE system by using simple interpolation techniques.
Examples are presented, which demonstrate the straightforward application of the approach.
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Adaptive β-blocked multistep methods for index 2 Euler-Lagrange differential
algebraic equations

Fatemeh Mohammadi, Carmen Arévalo, Claus Führer, Mon 15:15 R 3.28

It is common to use BDF methods to solve index 2 DAE systems numerically even for non-
stiff state space form of a problem. Because the solution with non-stiff integrators such as
Adams-Moulton discretizations, is unstable. A technique designed to overcome this instability
is β-blocking [1, 4, 2]. This stabilizing technique was developed for fixed step-size multistep
methods.
In this talk we present a polynomial formulation of β−blocked multistep methods [3] that
allows the use of variable step-sizes by construction. We formulate adaptive singular and
regular β−blocked multistep methods and demonstrate their performance by some numerical
examples.
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Weak convergence for a stochastic exponential integrator and finite element
discretization of stochastic partial differential equation with additive noise

Jean Medard Ngnotchouye, Antoine Tambue, Mon 17:00 R 1.26

We consider a finite element approximation of a general semi-linear stochastic partial differential
equation driven by space-time additive noise. We examine the full weak convergence rate for
non-self-adjoint linear operator with additive noise. Key part of the proof does not rely on
Malliavin calculus. For non-self-adjoint operators, we analyse the optimal strong error for
spatially semi discrete approximations for additive noise with truncated and non-truncated
noise. Depending on the regularity of the noise and the initial solution, we found that in some
cases the rate of weak convergence is twice the rate of the strong convergence. We present some
numerical results in two dimensions to support our convergence rate result.

Adaptive time-stepping in Lie group integrators
Brynjulf Owren, Charles Curry, Thu 10:40 R 1.27

We introduce variable stepsize commutator free Lie group integrators, where the error control
is achieved using embedded Runge-Kutta pairs. For orders 3 and 4, we are able to obtain such
pairs with the minimal number of flow calculations (exponentials). The methods make use of
reusal of exponentials from previous stages. We present some numerical examples where we
apply the schemes to some well-known problems in mechanics as well as the stiff van der Pol
oscillator.
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Haar Wavelets based Algorithms for Simulation of Hyperbolic Type Wave
Equations

Sapna Pandit, R C Mittal, Tue 11:55 R 1.27

In this article, the authors developed two algorithms based on Haar wavelets operational matrix
for simulation of nonlinear hyperbolic type wave equations. These types of equations describe
a variety of physical model in the nonlinear optics, relativistic quantum mechanics, solitons
and condensed matter physics, interaction of solitons in collisionless plasma and solid state
physics etc. The algorithms reduced the equations into a system of algebraic equations and
then the system is solved by Gauss-elimination procedure. Some well-known hyperbolic type
wave problems are considered as numerical problems to check the accuracy and efficiency of
the proposed algorithm. The numerical results are shown in figures and RMS, L2 errors form.

Orbital convergence of timestepping schemes for non-smooth mechanics
Manuela Paschkowski, Martin Arnold, Thu 11:30 R 1.26

When simulating mechanical systems with impacts, velocity jumps occur. Timestepping schemes
are well-known possibilities to integrate such dynamical systems. Their advantage is the avoided
event detection such that a large number of changes of the active set – especially accumulation
points of velocity jumps – can be handled with higher computational efficiency, in particular
when single events are less important than the mean. These schemes are always of integration
order one with respect to discrete Lp-norms. This is a consequence of the identification of im-
pact points only with order one independently of the approximation order in the smooth phases.
In this talk, the idea of orbital convergence of timestepping schemes is presented, which is a
more reasonable tool to compare the approximation accuracy of different timestepping methods
[1, 2, 3]. Using the framework of measure differential inclusions, the orbital convergence order
of these schemes is studied for scalar problems. An experimental convergence analysis with the
bouncing ball and the impact oscillator examples will underline the benefits of this approach.
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Adapted discretization of evolutionary problems by non-polynomially fitted
numerical methods

Beatrice Paternoster, Mon 17:00 R 1.27

The talk is devoted to the discretization of selected evolutionary problems generating periodic
wavefronts [5] and aims to explain the benefits gained by adapting the numerical scheme to the
problem. Such an adaptation is carried out by merging the a-priori known qualitative informa-
tion on the problem, as well as the structure of the vector field itself, into the numerical scheme.
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Particular emphasis will be given to advection-reaction-diffusion problems, for which the adapt-
ation in space is developed by means of a finite difference scheme based on trigonometrical basis
functions [3], rather than on algebraic polynomials which could strongly reduce the stepsize in
order to accurately reproduce the prescribed oscillations of the exact solution. The adaptation
in time takes into account that the spatially discretized problem is characterized by a vector
field consisting in stiff and nonstiff terms, hence it makes sense to adopt an implicit-explicit
(IMEX) time integration, which implicitly integrate only the stiff constituents, while the non-
stiff part is computed explicitly. Clearly, the employ of non-polynomial basis functions makes
the coefficients of the numerical method dependent on unknown parameters (i.e. the frequency
of the oscillations), which need to be properly estimated [4]; the proposed estimation relies
on a minimization procedure of the local truncation error that is carried out a-priori, without
affecting the computational cost of the integration. A rigorous analysis on the stability and
accuracy properties of the overall method is presented, together with some numerical tests, in
order to highlight the effectiveness of the approach. The introduced technique also covers the
case of periodic dynamics generated by evolutionary problems with memory [1, 2], discretized
in terms of non-polynomially fitted quadrature methods able to accurately reproduce the oscil-
latory behavior with a reduced computational cost with respect to their analogous polynomial
version, when a good estimate of the unknown frequency is provided. Stability issues for such
a discretization are also addressed.
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Data driven feedback control of nonlinear PDEs using the Koopman operator
Sebastian Peitz, Stefan Klus, Thu 15:30 R 3.28

In this talk we present a data driven reduced order modeling approach for control of nonlinear
PDEs which relies on the Koopman operator. We construct a bilinear surrogate model via
linear interpolation between two Koopman operators corresponding to constant controls. Using
a recent convergence result for Extended Dynamic Mode Decomposition, convergence of the
reduced order model based control problem towards the true optimum can be guaranteed if
the control system depends linearly on the input. The resulting feedback controller is used to
control the Burgers equation as well as the flow around a cylinder governed by the Navier-Stokes
equations.
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Parametric dependence of the advection-diffusion equation in two dimensions
Matheus Fernando Pereira, Varese Salvador Timóteo, Mon 17:25 R 3.28

In this work we have solved the two-dimensional advection-diffusion equation numerically for a
spatially dependent solute dispersion along non-uniform flow with a pulse type source in order
to make a systematic study on the influence of medium heterogeneity, initial flow velocity and
initial dispersion coefficient parameters on the solutions of the equation. The behavior of the
solutions is then investigated as we change the three parameters independently. Our results
show that even though the parameters represent different physical features of the system,
the effect on their variation is very similar. We also observe that the effects caused by the
parameters on the concentration depend on the distance from the source. Finally, our numerical
results are in good agreement with the exact solutions for all values of the parameters we used
in our analysis.

Polynomial chaos expansion for solving stochastic control problems
Lena-Maria Pfurtscheller, Tijana Levajkovic, Hermann Mena, Mon 14:00 R 1.29

We consider the infinite dimensional stochastic linear quadratic optimal control problem and
provide a numerical framework for solving this problem using a polynomial chaos expansion
approach. The resulting system consists of a set of deterministic partial differential equations
in terms of the coefficients of the state and the control variables. For each equation, we then
set up an optimal control problem. We solve the arising problems by deterministic numerical
methods and thus obtain an approximation of the stochastic problem. We show some numerical
examples and compare our approach to the standard one. Moreover, we discuss the difference
between the finite and infinite horizon case.
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A low-rank splitting integrator for matrix differential equations
Chiara Piazzola, Mon 14:25 R 1.29

In this talk we present a numerical integrator for determining low-rank approximations to
solutions of large-scale matrix differential equations. In particular, we consider semilinear
stiff problems and propose a low-rank integrator based on splitting methods to separate the
stiff linear part of the equation from the non-stiff nonlinear one. Then the solutions of the
subproblems are approximated by low-rank ones. The strength of the proposed approach is
that the time integration is performed only on the low-rank factors of the solution. We provide
a convergence analysis and discuss some numerical results.

This is joint work with H. Mena, A. Ostermann, L.-M. Pfurtscheller and H. Walach.
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Model order reduction for linear dynamical systems with quadratic outputs
Roland Pulch, Akil Narayan, Thu 11:05 R 1.26

We consider initial value problems for linear time-invariant systems consisting of ordinary dif-
ferential equations

Eẋ(t) = Ax(t) +Bu(t), x(t0) = x0

y(t) = x(t)>Mx(t)

with state variables x and inputs u. The quadratic output y represents a quantity of interest
defined by a symmetric matrix M of rank k. We investigate model order reduction (MOR)
for systems of high dimension. The system can be transformed into a linear dynamical system
with k linear outputs, see [1]. However, many MOR methods for linear dynamical systems
become inefficient or even infeasible in the case of large numbers k. Alternatively, we transform
the system into a quadratic-bilinear (QB) form with a single linear output. The properties of
this QB system are analyzed. We apply the MOR technique of balanced truncation from [2] to
the QB system, where a stabilization is required. The solution of quadratic Lyapunov equations
is traced back to the solution of linear Lyapunov equations. We present numerical results for a
relevant example including a high rank k, where the two MOR approaches are compared.
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A splitting approach for the KdV equation with transparent boundary conditions
Mirko Residori, Mon 17:00 R 3.28

In this talk we propose a numerical approach for the linearized 1-D Korteweg–de Vries (KdV)
equation with space dependent coeffcients

ut + a(x)ux + b(x)uxxx = 0,

where the spatial domain is unbounded (x ∈ R). We cut off a finite computational domain
from the unbounded one and we employ transparent boundary conditions. We follow a splitting
strategy in order to divide the full equation into its dispersive part ut + b(x)uxxx = 0 and its
transport part ut +a(x)ux = 0. The transparent boundary conditions are then derived in a full
discrete setting using the Crank–Nicolson and the explicit Euler finite different schemes for the
dispersive and the transport equation respectively. Numerical simulations are presented that
illustrate the theoretical results.
This is a joint work with Einkemmer Lukas and Alexander Ostermann.
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Parameter Identification for Delay Differential Equations
Fathalla Rihan, Tue 11:30 R 3.28

In this talk, we present the theoretical framework to solve inverse problems for Delay Differ-
ential Equations (DDEs). Given a parameterized DDE and experimental data, we estimate
the parameters appearing in the model, using least squares approach. Some issues associated
with the inverse problem, such as nonlinearity and discontinuities which make the problem
more ill-posed, are studied. Sensitivity and robustness of the models to small perturbations
in the parameters, using variational approach, are also investigated. The sensitivity functions
may provide guidance for the modelers to determine the most informative data for a specific
parameter, and select the best fit model. The consistency of delay differential equations with
bacterial cell growth is shown by fitting the models to real observations.

keywords: DDEs - Nonlinearity - Parameter estimation - Sensitivity analysis - Time-lags

New low-storage SSP Runge-Kutta methods
Teo Roldan, Inmaculada Higueras, Wed 10:05 R 1.23

Low-storage implementations are highly recommended for the numerical resolution of differ-
ential problems where memory management considerations are as important as accuracy and
stability considerations. These differential problems usually are obtained after a spatial dis-
cretization of some partial differential equations.

For Runge-Kutta schemes, most of the classic low-storage methods are based on the ideas
of Williamson and van der Houwen. However, some other approaches, based on Shu-Osher
representations of Runge-Kutta methods, have also been considered in the literature. In some
cases, optimal Strong Stability Preserving (SSP) methods have sparse Shu Osher matrices
and this sparse structure can be exploited to reduce the number of registers required for its
implementation.

In this talk we show new low-storage SSP Runge-Kutta methods that can be implemented in
two memory registers. Although their SSP coefficients are not optimal, they have some other
additional relevant properties. Some numerical experiments show the efficiency of these new
schemes.

Combining a stroboscopic method with the spectral deferred correction method
Juliane Rosemeier, Tue 11:30 R 1.23

In natural sciences, problems with periodic forcings are studied often; for instance for an ideal-
ized ice cloud model the impact of gravity waves can be represented by such a forcing. Therefore,
we implemented a new method for stroboscopic problems. For a first test, we chose the inverted
Kapitsa pendulum equation which is an appropriate test problem for this kind of methods. Our
numerical scheme is a combination of two existing methods. We used a stroboscopic method
proposed by Calvo et al. (2011) and the method of spectral deferred correction. The first
above-mentioned method consists of a micro-solver and a macro-solver. The method of spec-
tral deferred correction is an iterative scheme and used as a macro-solver for the first method.
The iterations of the spectral deferred correction method are used to increase the accuracy of
the macro-solver.

57



Linearly Stabilized Schemes for the Time Integration of Stiff Nonlinear PDEs
Steven Ruuth, Kevin Chow, Wed 08:40 R 3.28

In many applications, the governing PDE to be solved numerically contains a stiff component.
When this component is linear, an implicit time stepping method that is unencumbered by
stability restrictions is preferred. On the other hand, if the stiff component is nonlinear, the
complexity and cost per step of using an implicit method is heightened, and explicit methods
may be preferred for their simplicity and ease of implementation. In this talk, we consider new
and existing linearly stabilized schemes for the purpose of integrating stiff nonlinear PDEs in
time. These schemes compute the nonlinear term explicitly and, at the cost of solving a linear
system with a matrix that is fixed throughout, are unconditionally stable, thus combining the
advantages of explicit and implicit methods. Applications are presented to illustrate the use of
these methods.

Runge-Kutta methods for index-2 and index-3 differential-algebraic equations
arising from incompressible flow problems

Benjamin Sanderse, Arthur Veldman, Thu 11:05 R 3.28

Many computational physics problems can be modelled by partial differential equations (PDEs)
with constraints. In particular, we are interested in single-phase and multi-phase incompressible
fluid flow problems, in which the constraint is that the velocity field is divergence-free. After
discretizing the PDEs in space, a differential-algebraic equation (DAE) system is obtained. In
previous work we have analyzed the accuracy of explicit Runge-Kutta methods for the single-
phase incompressible Navier-Stokes equations, which form an index-2 DAE. In the current
work we consider the extension to multi-phase incompressible flow problems in pipelines and
channels, where a different constraint leads to a DAE with index 3. Existing time integration
methods for this system lack either conservation, accuracy, or constraint-consistency.
We propose a third order half-explicit Runge-Kutta method (Hairer et al., 1989) that is con-
sistent with the constraints of the index-3 DAE system, and with coefficients chosen such that
order reduction due to the DAE nature of the equations is prevented. The method is explicit
for the mass and momentum equations and implicit for the pressure. The resulting method is
(i) constraint-consistent: exact conservation of the volume constraint and the incompressibility
constraint; (ii) accurate: high order temporal accuracy for differential and algebraic variables;
(iii) conservative: the original mass and momentum equations are solved, so that the proper
shock conditions are satisfied; (iv) efficient: the only implicit part is the pressure Poisson equa-
tion, and the time step for the explicit part is restricted by a benign CFL condition based on
the convective wave speeds.
Several testcases show the effectiveness of the time-integration methods: Kelvin-Helmholtz
instabilities in a pipeline, liquid sloshing in a tank, and ramp-up of gas production in a multi-
phase pipeline.

MRI-GARK: A Class of Multirate Infinitesimal GARK Methods
Adrian Sandu, Mon 16:10 R 1.23

Differential equations arising in many practical applications are characterized by multiple time
scales. Multirate time integration seeks to solve efficiently multiscale systems by discretizing
each component with a different, appropriate time step, while ensuring the overall accuracy and
stability of the numerical solution. Multirate methods of linear multistep and Runge-Kutta
type have been proposed in the literature. In a seminal paper Wensch, Knoth, and Galant
(BIT Numerical Mathematics 49, 2009) developed multirate infinitesimal step (MIS) methods
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that discretize the slow component with an explicit Runge-Kutta method, and advance the fast
component via a modified fast ODE system. Günther and Sandu (Numerische Mathematik 133,
2016) explained MIS schemes as a particular case of multirate general-structure Runge-Kutta
(GARK) methods.
This work constructs a family of multirate infinitesimal GARK schemes (MRI-GARK) that
extends the hybrid dynamics idea of the MIS approach. The order conditions theory and
stability analyses are developed. Particular methods of order up to four are derived. Numerical
results are presented confirm the theoretical findings. We expect the new MRI-GARK family
to be useful for differential equations with widely disparate time scales, where the influence of
the fast component on the slow one is weak.

Multilevel Uncertainty Quantification with Sample-Adaptive Model Hierarchies
Robert Scheichl, Tue 09:20 R 3.28

Sample-based multilevel uncertainty quantification tools, such as multilevel Monte Carlo, mul-
tilevel quasi-Monte Carlo or multilevel stochastic collocation, have recently gained huge pop-
ularity due to their potential to efficiently compute robust estimates of quantities of interest
(QoI) derived from PDE models that are subject to uncertainties in the input data (coeffi-
cients, boundary conditions, geometry, etc). Especially for problems with low regularity, they
are asymptotically optimal in that they can provide statistics about such QoIs at (asymptotic-
ally) the same cost as it takes to compute one sample to the target accuracy. However, when
the data uncertainty is localised at random locations, such as for manufacturing defects in
composite materials, the cost per sample can be reduced significantly by adapting the spatial
discretisation individually for each sample. Moreover, the adaptive process typically produces
coarser approximations that can be used directly for the multilevel uncertainty quantification.
In this talk, we present two novel developments that aim to exploit these ideas. In the first part
we will present Continuous Level Monte Carlo (CLMC), a generalisation of multilevel Monte
Carlo (MLMC) to a continuous framework where the level parameter is a continuous variable.
This provides a natural framework to use sample-wise adaptive refinement strategies, with a
goal-oriented error estimator as our new level parameter. We introduce a practical CLMC es-
timator (and algorithm) and prove a complexity theorem showing the same rate of complexity
as MLMC. Also, we show that it is possible to make the CLMC estimator unbiased with respect
to the true quantity of interest. Finally, we provide two numerical experiments which test the
CLMC framework alongside a sample-wise adaptive refinement strategy, showing clear gains
over a standard MLMC approach with uniform grid hierarchies. In the second part, we extend
the sample-adaptive strategy to multilevel stochastic collocation (MLSC) methods providing a
complexity estimate and numerical experiments for a MLSC method that is fully adaptive in
the dimension, in the polynomial degrees and in the spatial discretisation.
This is joint work with Gianluca Detommaso (Bath), Tim Dodwell (Exeter) and Jens Lang
(Darmstadt).

Superconvergent IMEX Peer methods with A-stable implicit part
Moritz Schneider, Jens Lang, Willem Hundsdorfer, Rüdiger Weiner, Thu 11:30 R 1.23

The spatial discretization of certain time-dependent partial differential equations (e.g. advection-
diffusion-reaction systems) yields large systems of ODEs where the right-hand side can be split
into a stiff and a non-stiff part. We are interested in the construction of time integrators that
combine the favorable stability properties of implicit methods and the low computational cost
of explicit schemes. In order to guarantee consistency and thus convergence, the implicit and
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explicit integrator must fit together. A natural way to construct these so called implicit-explicit
(IMEX) methods is to start with an appropriate implicit scheme and extrapolate it in a suitable
manner. Promising candidates are implicit Peer methods as shown by Lang and Hundsdorfer
[1].

In this talk, we discuss the construction of superconvergent methods with A-stable implicit part
[2]. To this end, we begin with the derivation of conditions for constant step size sequences
and, later, extend this notion to the setting of variable step sizes.

We start by recalling basic properties of s-stage IMEX Peer methods, such as consistency and
stability, which are analyzed in detail in [1]. The main part of the talk is devoted to the
concept of superconvergence, i.e. convergence of order s+ 1, and its application to IMEX Peer
methods. After a short introduction to the subject, we derive necessary and sufficient conditions
on the coefficient matrices that guarantee superconvergence of the full scheme for constant step
sizes. Further, we present a construction procedure for superconvergent implicit Peer methods
and the subsequent extrapolation. In the second part, we discuss how the previously derived
consistency conditions have to be modified such that the resulting method is superconvergent
for variable step size sequences as well. In addition, we comment on the stability of these new
schemes. Finally, we illustrate the advantage of the new superconvergent schemes in numerical
examples and compare them with established methods, including those recently developed by
Soleimani, Knoth and Weiner in [3, 4].
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Variational models and partial differential equations for mathematical imaging
Carola-Bibiane Schönlieb, Mon 09:20 R 3.28

Images are a rich source of beautiful mathematical formalism and analysis. Associated mathem-
atical problems arise in functional and non-smooth analysis, the theory and numerical analysis
of partial differential equations, harmonic, stochastic and statistical analysis, and optimisation.
Starting with a discussion on the intrinsic structure of images and their mathematical represent-
ation, in this talk we will learn about variational models for image analysis and their connection
to partial differential equations, and go all the way to the challenges of their mathematical ana-
lysis as well as the hurdles for solving these - typically non-smooth - models computationally.
The talk is furnished with applications of the introduced models to image de-noising, motion
estimation and segmentation, as well as their use in biomedical image reconstruction such as it
appears in magnetic resonance imaging.
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Numerical simulation to capture the pattern formation
Sukhveer Singh, Tue 11:55 R 1.23

This work deals to capture the different types of patterns of nonlinear time dependent coupled
reaction diffusion models. To accomplish this work, a new differential quadrature (DQ) al-
gorithm is developed with the help of modified trigonometric cubic B-spline functions. The
stability part of the developed algorithm is studied by matrix stability analysis method. In
the experimental part, different types of patterns of Gray–Scott, Schnakenberg, Isothermal
Chemical and Brusselator Models are captured which are similar to the existing patterns of the
models.

Numerical valuation of Bermudan basket options via partial differential
equations

Jacob Snoeijer, Karel in ’t Hout, Mon 16:10 R 1.26

This talk deals with numerical methods to approximate the fair values of European and Ber-
mudan basket options, which constitute common products in the financial markets. If there
are d ≥ 2 assets in the basket, then the fair value of such a financial option satisfies a time-
dependent d-dimensional partial differential equation. For its efficient numerical solution, we
discuss in this talk a useful dimension reduction technique and numerically investigate its con-
vergence behaviour by ample experiments.

Modelling and numerical simulation of hydrogen flow in networks
Gerd Steinebach, Mon 14:00 R 1.27

In this talk fluid flow problems in networks are considered. The focus is on the simulation of
metal hydride storage systems integrated into a hydrogen network for energy supply. First,
the general modelling approach for flow simulation in networks is introduced. Suitable semi-
discretization in space by WENO methods leads to large DAE systems. Simple problems are
used as examples to discuss some numerical difficulties.

The simulation of large networks requires robust and efficient integrators for DAEs. Nunmerical
investigations with different methods are presented.

On Singly Implicit Runge-Kutta Methods of High Stage Order that Utilize
Effective Order

Tim Steinhoff, Wed 09:40 R 1.23

The abscissae ci of a classical singly implicit Runge–Kutta method (SIRK) of order p, that
also has a stage order of p, are tightly bound to the roots of the p-degree Laguerre polynomial.
Utilizing the concept of effective order lifts this restriction allowing for arbitrary choices of ci
in principal. To provide further flexibility in terms of error constants and stability we discuss
in this talk a combination of the effective order concept with SIRK methods, that are based
on perturbed collocation. Furthermore, the concept of finite iteration is taken into account to
ensure that a predefined number of Newton iteration steps suffices to meet the (effective) order
of the corresponding fully implicit SIRK method.
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Singular value decay of solutions to operator-valued differential Lyapunov and
Riccati equations

Tony Stillfjord, Mon 14:50 R 1.29

It is frequently observed in practice that the singular values of the solutions to differential
Lyapunov equations or differential Riccati equations decay very quickly. This is the basis for
the low-rank approach which is often used in numerical methods for such equations: if a fast
decay is not present, the solution approximant is either no longer of low rank or no longer a good
approximant. In the former case, the computational cost and memory requirements become
infeasible, and in the latter case the result is worthless. In spite of this, the literature contains
very few, or any, theoretical results on when such decay is to be expected. The situation
is better understood for algebraic Lyapunov and Riccati equations, but these results are not
directly applicable to the differential case.
In this talk I will discuss recent results on extending the algebraic results to the differential case.
The main result is that one should not expect exponential decay, but exponential in the negative
square root. We consider the operator-valued setting, with the standard assumption that the
state operator A generates an analytic semigroup and the input and output operators B and
C are not too unbounded. This corresponds, e.g., to the control of abstract parabolic problems
where the control may act either in a distributed fashion or through the boundary conditions.
In the commonly considered matrix-valued case, which corresponds to a spatial discretization
of the operator-valued equation, exponential decay has been demonstrated. I will show by an
example that this is only relevant for small-scale problems; as the discretization is refined this
decay deteriorates and becomes exponential in the negative square-root.

Piecewise smooth dynamic simulations via algorithmic piecewise differentation
Tom Streubel, Andreas Griewank, Caren Tischendorf, Thu 17:00 R 1.26

Given some piecewise differentiable ODE, the order of consistency of any Runge-Kutta method
or any multistep method will drop to 2 while crossing a non differentiability. We will discuss
changes during the derivation of the midpoint rule and the trapezoidal method such that they
attain their consistency order of 3 again. These modified versions of both integrators are
considered to be nonsmooth generalizations in that they are still equivalent to their classical
counterparts on sufficiently smooth systems of ODEs. We will discuss energy preservation and
symplectic properties of both the classical and generalized midpoint rule for piecewise smooth
Hamiltonian systems. We will conclude the talk with an outlook to semi explicit DAEs and
the generalization of multistep methods based on piecewise polynomial Taylor expansions.

Collective integration of Hamilton PDEs
Benjamin Tapley, Christian Offen, Robert McLachlan, Elena Celledoni, Brynjulf Owren,

Thu 11:55 R 1.27

Many PDEs (e.g., Burgers’, KdV and Camassa-Holm) can be written in the Hamiltonian formu-
lation on a Poisson manifold; however, no general-purpose Poisson integrators are available for
such systems. In [1] Poisson integrators are found for ODEs by first finding a symplectic real-
isation of the Poisson manifold then applying a symplectic integrator to the collective system.
In this presentation we extend the work done in [1] by considering the action of the diffeo-
morphism group on the circle Diff(S1). The realisation is obtained as the momentum map of
the cotangent lift of the group action of Diff(S1) on C∞(S1). In our examples we consider
Burgers’ and other Hamiltonian PDEs and show that by implementing symplectic integrators
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on a collective system, we obtain more long-term stable solutions and better preservation of
the Casimir and Hamiltonian when compared to integrating the system on diff∗(S1).
[1] Robert I McLachlan, Klas Modin and Olivier Verdier, “Collective symplectic integrators”
Nonlinearity 27 (2014) 6

Willem Hundsdorfer’s role and research in the Multiscale Dynamics group at
CWI

Jannis Teunissen, Wed 10:30 R 3.28

This talk gives a brief overview of Willem Hundsdorfer’s role and research in the Multiscale
Dynamics group at CWI (Centrum Wiskunde & Informatica), Amsterdam. Having joined CWI
in 1984, he was part of the Multiscale Dynamics group since 2002. Teamed up with Ute Ebert,
Willem brought in the numerical expertise to develop numerical models of electric discharges.
An important contribution was for example the use of adaptive mesh refinement for solving
advection-diffusion-reaction as well as elliptic equations. With his students, Willem also worked
on multirate time-stepping techniques for stiff ODEs and PDEs and on monotonicity preserving
schemes.

Convergence of regularised solutions of piecewise smooth differential equations
Daniel Paul Tietz, Martin Arnold, Thu 11:55 R 1.26

We study piecewise smooth differential equations in which the discontinuity of the vector field
occurs on two smooth surfaces of the phase space and may result in codimension-2 sliding.
First we will regularise the associated differential inclusion with a small regularisation para-
meter ε. Based on the ideas presented in [1] and [2], especially some asymptotic expansion
techniques, we will then discuss the linear convergence of the regularised solutions in ε for the
most common cases.
Finally we will analyse some problems given from electrical engineering and validate the the-
oretical result.

[1] N. Guglielmi und E. Hairer. Classification of hidden dynamics in discontinuous dynamical
systems. In: SIAM Journal on Applied Dynamical Systems, 14(3): 1454-1477, 2015.

[2] N. Guglielmi und E. Hairer. Solutions leaving a codimension-2 sliding. In: Nonlinear
Dynamics, 88(2): 1427-1439, 2017.

Sampling strategies and diffusion maps
Zofia Trstanova, Ben Leimkuhler, Tue 17:00 R 1.26

The main challenge for sampling Boltzmann-Gibbs distributions comes from the high dimen-
sionality of the system and complicated (metastable) energies. In this talk, I will focus on
Langevin dynamics, and diffusion maps. Diffusion maps are a dimension reduction technique
that can provide an approximation of the generator of Langevin dynamics. This approximation
can serve as an automatic tool for exploration of the local geometry of the underlying manifold.
I will explain how this strategy can accelerate sampling and highlight these ideas by numerical
simulations.
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Model order reduction for space-adaptive simulations of unsteady
incompressible flows

Sebastian Ullmann, Carmen Gräßle, Michael Hinze, Jens Lang, Thu 17:30 R 3.28

We consider model order reduction for unsteady incompressible Navier-Stokes problems. A
reduction of computational complexity is achieved by a Galerkin projection of the solution of
a high-dimensional reference problem onto a low-dimensional subspace. We focus on subspaces
generated by a proper orthogonal decomposition (POD) of space-adapted finite element snap-
shots. In previous works, we have investigated adaptive POD-Galerkin modeling for elliptic and
parabolic problems [1, 2]. Incompressible flows pose additional challenges regarding the stabil-
ity of the resulting reduced-order models and regarding the implementation of inhomogeneous
initial and boundary condition.

We propose two approaches to computing reduced spaces which result in stable POD-Galerkin
models. The first approach employs a projection of the adapted velocity snapshots onto a space
of functions which are weakly divergence-free with respect to a pressure reference space. The
resulting reduced-order model is a system of ordinary differential equations for the velocity
POD coefficients. The second approach is based on separate PODs of the adapted velocity and
pressure snapshots. Here, the velocity POD basis is enriched by supremizer functions computed
on a reference velocity space. The stability of the velocity-pressure pair of reduced spaces is
linked to the inf-sup constant of the reference discretization.

We analyze the complexity of the proposed reduced-order models, present numerical results for
a benchmark problem, and compare our methods in terms of accuracy per computational cost.

References

[1] C. Gräßle and M. Hinze, POD reduced-order modeling for evolution equations utilizing
arbitrary finite element discretizations, Adv. Comput. Math. (2018), doi: 10.1007/s10444-
018-9620-x.

[2] S. Ullmann, M. Rotkvic and J. Lang, POD-Galerkin reduced-order modeling with
adaptive finite element snapshots, J. Comput. Phys. (2016), 325:244–258, doi:
10.1016/j.jcp.2016.08.018.

Efficiency of micro-macro acceleration for scale-separated stochastic differential
equations

Hannes Vandecasteele, Przemyslaw Zielinski, Giovanni Samaey, Thu 11:30 R 3.28

Many stochastic systems in nature have an inherent time-scale separation, while we are typically
only interested in the evolution of some well-chosen macroscopic state variables on long time
scales. Here, we investigate a new micro-macro acceleration algorithm for such multiscale
systems when the model is a stiff stochastic differential equation.

The proposed algorithm interleaves short bursts of stochastic microscopic simulation with
extrapolation of the macroscopic states over a larger time interval. .Since the extrapolation
step is larger than the step size of the explicit inner microscopic time integrator, the method
is expected to provide a gain in computational efficiency. The drawback is an increased time
discretization error.
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For slow-fast SDEs, it is often also possible to derive an approximate macroscopic model for
the non-stiff variable in the limit of infinite time-scale separation. This approximate model
however induces a modelling error when the separation is finite. Our results show that the
micro-macro acceleration method can attain a lower error than the approximate macroscopic
model, while increasing efficiency with respect to the microscopic simulation.

Time Dependent Stability: Computation and Applications
Erik Van Vleck, Fri 08:30 R 3.28

Time dependent stability spectra such as Lyapunov exponents and Sacker-Sell spectrum provide
stability information for time dependent solutions of differential equations. These stability
spectra fill roles that real parts of eigenvalues play for time independent solutions. In this
talk we review time dependent stability spectra and their properties, numerical techniques for
extracting stability spectra and their approximation properties, and then turn our attention
to applications of such stability spectra. Particular attention will be paid to time dependent
stability of numerical time stepping techniques and stiffness detection and to applications to
data assimilation via decomposition of the tangent space of nonlinear time evolving models into
time dependent stable and unstable subspaces.

Two-grid Algorithms for Solution of Difference Equations of Compressible
Fluid Flow

Lubin Vulkov, Miglena Koleva, Tue 11:30 R 1.29

We propose two-grid algorithms for solving 1D and 2D compressible flow systems of equations
on a bounded domain. In the first step, the nonlinear boundary value problem is discretized
on a coarse grid of size H. In the second step, the nonlinear problem is linearized around an
interpolant of the computed solution at the first step. Then, the linear problem is solved on
a fine mesh of size h, h < H. On this base, we develop two-grid iteration algorithms, that
achieve optimal accuracy as long as the mesh size satisfies h = (H2r), r = 1, 2, . . . , where r is
the r-th Newton’s iteration for the linearized differential problem. Numerical experiments are
discussed

Geometric integration on Lie groups using the Cayley transformation
Michele Wandelt, M. Günther, M. Muniz, Thu 11:30 R 1.27

This talk deals with geometric numerical integration on a Lie group using the Cayley trans-
formation.
We investigate a coupled system of differential equations in a Lie group setting that occurs
in Lattice Quantum Chromodynamics. Here, elementary particles are simulated which means
expectation values of some operators are computed using the Hybrid Monte Carlo method. In
this context, Hamiltonian equations of motion are solved with a time-reversible and volume-
preserving integration method. Usually, the exponential function is used in the integration
method as mapping from the Lie algebra to the Lie group.

The focus is put on geometric numerical integration using the Cayley transformation instead of
the exponential function. The geometric properties of the method are shown for the example of
the Störmer-Verlet method, both theoretically and numerically. Moreover, its advantages and
disadvantages are discussed.
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Volume-preserving exponential integrators
Bin Wang, Xinyuan Wu, Wed 10:05 R 1.27

This talk is about the volume-preserving property of exponential integrators in different vector
fields. We derive a necessary and sufficient condition of volume preservation for exponential
integrators, and with this condition, volume-preserving exponential integrators are analysed in
detail for four kinds of vector fields. It turns out that symplectic exponential integrators can
be volume preserving for a much larger class of vector fields than Hamiltonian systems. On the
basis of the analysis, novel volume-preserving exponential integrators are derived for solving
highly oscillatory second-order systems and extended RKN integrators of volume preservation
are presented for separable partitioned systems. Moreover, the volume preservation of RKN
methods is also discussed.

Optimally zero-stable superconvergent IMEX Peer methods
Rüdiger Weiner, Behnam Soleimani, Jens Lang, Moritz Schneider, Thu 11:05 R 1.23

Many systems of ODEs are of the form

y′ = f(t, y) + g(t, y)

with stiff part f and nonstiff part g, for instance MOL discretizations of diffusion-advection-
reaction equations. This kind of problems can be treated efficiently by implicit-explicit (IMEX)
methods. In IMEX methods the stiff part is solved by an implicit method, the nonstiff part is
solved by an explicit method.
In this talk we consider s-stage IMEX peer methods of order p = s for variable and of order
p = s + 1 for constant step sizes. They are combinations of s-stage superconvergent implicit
and explicit peer methods. Due to their high stage order no order reduction appears. This is
in contrast to one-step IMEX methods. On the other hand compared with multistep methods
there is no order bound for A-stability of the implicit part.
We construct methods of order p = s+ 1 for s = 3, 4, 5 where we compute the free parameters
numerically to give good stability with respect to a general linear test problem frequently used
in the literature. Numerical tests and comparison with two-step IMEX Runge-Kutta methods
confirm the high potential of the superconvergent IMEX peer methods.

Numerical properties of mixed order variational integrators applied to
dynamical multirate systems

Theresa Wenger, Sina Ober-Blöbaum, Sigrid Leyendecker, Tue 14:30 R 3.28

Dynamical systems having components that act on different time scales are a challenge for
numerical integration. Established approaches are to split the potential forces into fast and
slow ones or separating the configurations into fast and slow degrees of freedom allowing for
different treatment. Embedded in the framework of variationally derived integrators, the idea
here is, to use polynomials of different degrees to approximate the components that act on
different time scales. Together with quadrature rules of different orders to approximate the
parts of the action integral, the discrete Lagrangian is defined. Numerical investigations reveal,
that within this approach run-time savings can be achieved while the accuracy stays nearly
the same. However, linear stability can suffer, what is shown by analysing the eigenvalues
of the propagation matrices. Some of the presented integrators are reformulated as modified
trigonometric integrators and the modulated Fourier expansion is used to analyse the capture
of the slow energy exchange and the conservation of total energy and stiff oscillatory energy in
the Fermi-Pasta-Ulam problem.
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BDF integrators for mechanical systems on Lie groups
Victoria Wieloch, Martin Arnold, Thu 11:05 R 1.27

Multistep methods of BDF type are the methods-of-choice in many industrial multibody sys-
tem simulation packages. Matrix Lie groups can be used to describe large rotations without
singularities. In this framework, BLieDF is a k-step Lie group integrator for constrained second
order systems. Order reduction can be avoided by a slightly perturbed argument of the expo-
nential map for representing the nonlinearity of the numerical flow in the configuration space
without any time-consuming re-parametrization.
We compare this integrator with multistep methods on Lie groups suggested by Faltinsen et
al. [1] and show the advantages of the BLieDF integrator.

References

[1] S. Faltinsen, A. Marthinsen, and H. Munthe-Kaas, “Multistep methods integrating ordinary
differential equations on manifolds,” Applied Numerical Mathematics, vol. 39, p. 349–365,
2001.

Boundary value methods for semi-stable differential equations
Paul Andries Zegeling, Thu 10:40 R 1.29

In this talk I present a boundary-value method (BVM) that can be used for partial (PDE) and
ordinary differential equation (ODE) models with semi-stable, or even ill-posed, properties.
Traditionally, step-by-step methods, such as Runge-Kutta and linear multistep methods, are
being utilized for time-dependent models. However, their numerical stability regions (this holds
both for explicit and implicit methods) are usually such that a significant part does not intersect
with areas in the complex plane which are of importance for a successful time-integration.
BVMs, that need an extra numerical condition at the final time, are global methods and are,
in some sense, free of such barriers. As an example, a BVM, based on the explicit midpoint
method combined with an implicit-Euler final condition, possesses the whole complex plane
(excluding the imaginary axis) as stability region. On the other hand, they loose efficiency,
since an extended linear or nonlinear system has to be solved for the whole time range of
interest. Numerical experiments illustrating these properties are given for, among others, a
dispersive wave equation and the backward heat equation.

A uniformly exponentially stable ADI scheme for Maxwell equations
Konstantin Zerulla, Thu 11:05 R 1.29

Alternating direction implicit (ADI) schemes are a very efficient tool for time integration of
linear isotropic Maxwell equations on cuboids as they are unconditionally stable and decouple
into essentially one-dimensional problems.
We study the Maxwell system with Ohm’s law and a strictly positive conductivity. In this
case the solutions tend to zero exponentially for large times. However, works by Nicaise,
Tucsnak, Zuazua and others for the discretization of wave equations suggest, that the uniform
decay properties of the continuous Maxwell system get lost when discretizing in time or space
without additional damping.
We thus construct a modified ADI scheme by including artificial viscous damping. In this
way we obtain uniformly exponentially stable time-discrete approximations to the Maxwell
equations and an unconditionally stable scheme with similar effort as the original one. Finally,
we will also give a bound on the error of the modified scheme.
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Lagrange hybridized discontinuous Galerkin method for fractional
Navier-Stokes equations

Wenjiao Zhao, Jingjun Zhao, Yang Xu, Mon 15:15 R 1.23

In this talk, a particular Lagrange hybridized discontinuous Galerkin method is applied to time-
dependent incompressible fractional Navier-Stokes equations. The stability of the fully scheme
is proved, and error estimates for the L2-norm both in velocity and pressure are analysed in
detail. In addition, existence and uniqueness of weak solution are also considered. Finally, the
effectiveness of the proposed method is shown by some numerical examples.

Convergence and stability of micro-macro acceleration method for
scale-separated SDEs

Przemyslaw Zielinski, Kristian Debrabant, Tony Lelievre, Giovanni Samaey,
Thu 11:55 R 3.28

Many dynamical systems of current interest exhibit behavior on a wide range of time scales
and cannot be simulated directly on long (macroscopic) time intervals. I present and discuss a
multi-scale method to efficiently simulate the macroscopic observables of SDEs having strong
separation between time-scales.
The method couples short bursts of stochastic path simulation with extrapolation of spatial av-
erages forward in time. After each extrapolation, a new microscopic state is obtained by match-
ing the last available microscopic distribution with the extrapolated macroscopic state. The
matching is an inference procedure that renders a minimal perturbation of a prior microscopic
state (available just before the extrapolation) consistent with the extrapolated macroscopic
state.
I introduce the matching operator based on minimization of Kullback-Leibler divergence and
indicate why it provides a convenient numerical approach. Then, I discuss the relation of the
method to coarse graining, establish the convergence in the numerically weak sense, and inquire
about the stability for appropriately chosen test models.

68



4 List of participants

Abdi Kalasour, Ali University of Tabriz
ali.abdi.kalasour@gmail.com

Iran

Abuaisha, Tareq Institut für Elektrotechnik, TU Bergakademie
Freiberg
tareq.abuaisha@et.tu-freiberg.de

Germany

Al-Hdaibat, Bashir Hashemite University
b.alhdaibat@hu.edu.jo

Jordan

Almuslimani,
Ibrahim

University of Geneva
ibrahim.almuslimani@unige.ch

Switzerland

Arara, Alemayehu
Adugna

Hawassa University, Hawassa, Ethiopia
alemayehu_arara@yahoo.com

Ethiopia

Arnold, Martin Martin Luther University Halle-Wittenberg
martin.arnold@mathematik.uni-halle.de

Germany
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julia.charrier@univ-amu.fr

France

Cohen, David Ume̊a University
david.cohen@umu.se

Sweden

Constantinescu, Emil Argonne National Laboratory
emconsta@mcs.anl.gov

United States

Cortes Garcia, Idoia Technische Universität Darmstadt
cortes@gsc.tu-darmstadt.de

Germany

69

mailto:ali.abdi.kalasour@gmail.com
mailto:tareq.abuaisha@et.tu-freiberg.de
mailto:b.alhdaibat@hu.edu.jo
mailto:ibrahim.almuslimani@unige.ch
mailto:alemayehu_arara@yahoo.com
mailto:martin.arnold@mathematik.uni-halle.de
mailto:andres.avila@ufrontera.cl
mailto:stefan.banholzer@uni-konstanz.de
mailto:tobias.bauer@tropos.de
mailto:benner@mpi-magdeburg.mpg.de
mailto:lothar.boltze@mathematik.uni-halle.de
mailto:brehier@math.univ-lyon1.fr
mailto:juergen.bruder@mathematik.uni-halle.de
mailto:andreas.buhr@uni-muenster.de
mailto:sc58@hw.ac.uk
mailto:elena.celledoni@ntnu.no
mailto:julia.charrier@univ-amu.fr
mailto:david.cohen@umu.se
mailto:emconsta@mcs.anl.gov
mailto:cortes@gsc.tu-darmstadt.de
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Izzo, Giuseppe Università degli Studi di Napoli Federico II
giuseppe.izzo@unina.it

Italy

Jax, Tim Hochschule Bonn-Rhein-Sieg University of
Applied Sciences
tim.jax@h-brs.de

Germany

Jeffrey, Michael University of Bristol
mike.jeffrey@bristol.ac.uk

United Kingdom

Jiang, Xingzhou Department of mathematics, Harbin Institute
of Technology
15b912014@hit.edu.cn

China

Jimenez, Fernando Department of Engineering Science,
University of Oxford
fernando.jimenez@eng.ox.ac.uk

United Kingdom

Jiwari, Ram Indian Institute of Technology Roorkee
ram1maths@gmail.com

India

Ketcheson, David KAUST
david.ketcheson@kaust.edu.sa

Saudi Arabia

Kheiri Estiar,
Hossein

University of Tabriz
h-kheiri@tabrizu.ac.ir

Iran

Klinge, Marcel Martin Luther University Halle-Wittenberg
marcel.klinge@mathematik.uni-halle.de

Germany

Knoth, Oswald Leibniz-Institut für Troposphärenforschung
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