Higher order splitting methods for a class of Hamiltonian equations **Asif Mushtaq** (NTNU, Trondheim), Anne Kværnø, Kåre Olaussen

A systematic procedure for increasing the accuracy of numerical solutions of a rather general class of Hamilton equations of the form

$$H(\mathbf{q}, \mathbf{p}) = \frac{1}{2}\mathbf{p}^T M \mathbf{p} + V(\mathbf{q}),$$

have been discussed in [1] (and references therein). The schemes introduced here preserve the symplectic structure. The Störmer-Verlet method is of 2nd order. By the use of generating functions it can be increased from 2nd to 8th order. We have tested various orders of the method on a simple anharmonic oscillator, with regard to the very long time behaviour. In this talk, I will give equivalent graphical representations of the schemes, and test them on a wider class of problems. The procedure is conveniently described in terms of rooted trees and B-series. In general, the basic idea is to correct the Hamiltonian used in the splitting scheme with terms of increasing orders. I will show how can we construct the improved Hamiltonian up to higher order. I will also present results of numerical simulations of selected systems.

References

 A. Mushtaq, A. Kværnø, and K. Olaussen, Systematic improvement of splitting methods for the Hamilton equations, contribution to World Congress of Engineers 2012 (London, UK., 4–6 July, 2012).