Symmetry of general linear methods and the underlying one-step method John Butcher (University of Auckland), Adrian Hill

Let $\mathcal{M}_{h}: \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}$ denote the map defined by

$$
\begin{aligned}
Y & =h A F+U y, \\
F_{i} & =f\left(Y_{i}\right), \quad i=1,2, \ldots, s, \\
\mathcal{M}_{h} y & =h B F+V y .
\end{aligned}
$$

A method is "symmetric" if there exists an involution $L: \mathbb{R}^{r} \rightarrow \mathbb{R}^{r}, L^{2}=I$, such that $\mathcal{M}_{-h}=L \mathcal{M}_{h} L$. Let Φ_{h} denote the underlying one-step method and \mathcal{S}_{h} the corresponding starting method, so that $\mathcal{M}_{h} \mathcal{S}_{h}=\mathcal{S}_{h} \Phi_{h}$. This talk will include an analysis of the order of the method and related properties of \mathcal{S}_{h} and Φ_{h}.

