Symmetry of general linear methods and the underlying one-step method **John Butcher** (University of Auckland), Adrian Hill

Let $\mathcal{M}_h : \mathbb{R}^r \to \mathbb{R}^r$ denote the map defined by

$$Y = hAF + Uy,$$

$$F_i = f(Y_i), \quad i = 1, 2, \dots, s,$$

$$\mathcal{M}_h y = hBF + Vy.$$

A method is "symmetric" if there exists an involution $L : \mathbb{R}^r \to \mathbb{R}^r, L^2 = I$, such that $\mathcal{M}_{-h} = L\mathcal{M}_h L$. Let Φ_h denote the underlying one-step method and \mathcal{S}_h the corresponding starting method, so that $\mathcal{M}_h \mathcal{S}_h = \mathcal{S}_h \Phi_h$. This talk will include an analysis of the order of the method and related properties of \mathcal{S}_h and Φ_h .