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1 General Information

1. Conference Location and Lecture Rooms
The conference will take place in the lecture rooms of the Computer Science Building si-
tuated on the von-Seckendorff-Platz 1. There is a sufficiently large number of free parking
places available.

Opening of the seminar as well as plenary lectures take placein lecture room 3.28.

2. Conference Office and Registration
The conference office is open on Sunday, September 3, 2006 from 4 p.m. to 8 p.m. in the
lobby of the Intercity Hotel Halle-Neustadt.

On the other days it is situated in the Institute of Computer Science in room 1.18, von-
Seckendorff-Platz 1. It is open on Monday, Tuesday and Thursday from 8 a.m. to 4 p.m.,
and on Wednesday and Friday from 8 a.m. to 12 a.m. You can reachthe conference office
by phone (+49 (345) 5524799) and by fax (+49 (345) 5527004). These lines are active from
Monday, September 4, 2006.

Please register at the conference office after your arrival.There you will also receive your
conference documents.

Participants who did not use the bank transfer pay the conference fee in cash at the confe-
rence office. Please note that we cannot accept credit cards or cheques.

3. Time of Lectures and Discussion
Please note that the lecture times as given in the programme already include 5 minutes for
discussion.

4. Coffee and Tea Breaks
Coffee and tea are provided during the morning and afternoon breaks.

5. Lunch Break
TheMensa Weinbergis a 15 minute walk away. Please ask local participants or thestaff in
the conference office for further information. A cafeteria is located at the ground floor of the
Computer Science building.

6. E-mail
Computers for internet access are available in room 3.03.
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7. Conference Dinner
The conference dinner will be held in the Intercity Hotel Halle–Neustadt on Thursday, Sep-
tember 7, 2006 at 7 p.m. One dinner ticket is included in the conference fee; accompanying
persons pay EUR 30. The fee for the dinner is payable in cash when registering in the
conference office.

8. Guided Tour on Wednesday afternoon
You are invited to an excursion to the town of Freyburg on the banks of the river Unstrut
on Wednesday, September 6, 2006 (included in the conferencefee). Buses are leaving from
the conference venue at 1 p.m. and return to Halle at 7 p.m. On our tour to Freyburg we
will visit the Rotkäppchen Sektkellerei and taste the locally produced sparkling wine. You
will also have the chance to visit some of the other attractions in Freyburg or walk along the
river Unstrut to enjoy the beautiful scenery. Please register at the conference office if you
are interested.

9. Conference Proceedings
Selected papers will be published in a Special Issue of the JournalApplied Numerical Ma-
thematics. Guest editors are M. Arnold, B.P. Sommeijer, J.G. Verwer andR. Weiner.

Submitted conference papers must deal with original work not published elsewhere and will
be refereed according to the standard journal procedure.
Seehttp://www.elsevier.com/locate/apnum for the statement of objectives
and instructions for the authors.

Papers should be submitted electronically (in pdf or ps format) directly to

B.P.Sommeijer@cwi.nl

The deadline for submission is December 1, 2006.

Authors are encouraged to use the journal style files, see thegiven web address for instruc-
tions. The paper length is restricted to 20 style file pages.
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2 Programme Overview

Monday, September 4, 2006

Room 3.28

8.30–8.50 Opening
8.50–9.40 Calvo
9.40–10.30 Munthe-Kaas

10.50–11.40 Frank
11.40–12.30 Vandewalle

Room 1.23 Room 1.26 Room 1.27 Room 1.29

14.00–14.25 Hundsdorfer Horváth, Z. Amodio Dubinkina
14.25–14.50 Jahnke Hosseini Moreta Gerdts
14.50–15.15 Gerisch Shindin Sestini Lamour
15.15–15.40 Bratsos Milde Saravi

16.10–16.35 Simeon Hill R̈oßler Kulikov
16.35–17.00 Lunk Hewitt Debrabant Kolpakov, A.G.
17.00–17.25 Pulch Weiß Zahri Kolpakov, A.A.
17.25–17.50 Gruschinski Klymenko Yousefi

Tuesday, September 5, 2006

Room 3.28

8.30–9.20 Barton
9.20–10.10 Lubich

Room 1.23 Room 1.26 Room 1.27 Room 1.29

10.40–11.05 Geiser Jebens Araújo Kramer
11.05–11.30 Scḧadle Schmitt Barbeiro Lutoshkin
11.30–11.55 Ĺopez-Ferńandez Bartoszewski Ordokhani Trainelli
11.55–12.20 Hanke Boutelje Gorbunov Arnold
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Room 1.23 Room 1.26

Minisymposium:
Exponential Integrators

Minisymposium:
Numerical Methods in Ma-
thematical Biology

14.00-14.30 Ostermann 14.00–14.45 Stevens
14.30-15.00 Matthews 14.45–15.10 Ferreira
15.00-15.30 Skaflestad 15.10–15.35 Huisinga
15.30-16.00 Tokman 15.35–16.00 Pham Thi
16.30-17.00 Thalhammer 16.30–16.55 Tyson
17.00-17.30 Wright 16.55–17.20 Veneziani
17.30-18.00 Butcher 17.20–17.45 Ayati

17.45–18.00 General discussion
Wednesday, September 6, 2006

Room 3.28

8.30–9.20 S̈oderlind
9.20–10.10 Abdulle

Room 1.23 Room 1.26 Room 1.27 Room 1.29

10.40–11.05 Modin Br̈autigam Van Daele Qamar
11.05–11.30 Niesen Shapeev Ledoux Semin

Thursday, September 7, 2006

Room 3.28

8.30–9.20 Ruuth
9.20–10.10 J̈ungel

Room 1.23 Room 1.26 Room 1.27 Room 1.29

10.40–11.05 Arraŕas Tischendorf Savcenco Naidoo
11.05–11.30 Knoth Selva Soto Pfeiffer Perminov
11.30–11.55 Steinebach Bartel Kanth Rahimpour
11.55–12.20 Seaid Chudej Pace Zakharov

Room 1.23 Room 1.26

Minisymposium:
Maxwell equations and Elec-
tromagnetics

Minisymposium:
Mesh-free Methods

14.00–14.30 Vandewalle 14.00–14.35 Melenk
14.30–15.00 Benderskaya 14.35–15.10 Schweitzer
15.00–15.30 Horvath, R. 15.10–15.45 Gásṕar
15.30–16.00 Wimmer 16.15–16.50 Junk
16.30–17.15 De Raedt 16.50–17.25 Kuhnert
17.15–18.00 Botchev 17.25–18.00 Sarler
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Friday, September 8, 2006

Room 3.28

8.30–9.20 Brugnano
9.20–10.10 Podhaisky
10.30–11.20 In’t Hout
11.20–12.10 Serban
12.10–13.00 G̈unther
13.00 Closing
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3 Scientific Programme

Monday, September 4, 2006

Room 3.28

8.30–8.50 Opening

8.50–9.40 Mari Paz Calvo, E. Cuesta and C. Palencia
Runge-Kutta convolution quadrature methods for equations with memory: The
non-analytic case

9.40–10.30 Hans Z. Munthe-Kaas
On Multivariate Chebyshev Polynomials; from Group Theory toNumerical Ana-
lysis

10.30–10.50 – Break –

10.50–11.40 Jason Frank, S. Reich, B. Moore
Local conservation and multisymplectic discretizations for Hamiltonian PDEs

11.40–12.30 Stefan Vandewalle, Martin Gander
A time-parallel time-integration method for ordinary and partial differential
equations

12.30–14.00 – Lunch –

Room 1.23

14.00–14.25 Willem Hundsdorfer
Numerical Simulation of Streamers

14.25–14.50 Tobias Jahnke, Wilhelm Huisinga
Dynamical low-rank approximation of the chemical master equation

14.50–15.15 Alf Gerisch, Jens Lang, Helmut Podhaisky, Rüdiger Weiner
FE time-stepping using high-order two-step PEER methods

15.15–15.40 Athanassios Bratsos
A fourth-order implicit scheme for the two-dimensional sine-Gordon equation

15.40–16.10 – Break –

16.10–16.35 Bernd Simeon
Dynamic Contact and Differential-Algebraic Equations

16.35–17.00 Christoph Lunk , Bernd Simeon
Solving Partial Differential-Algebraic Equations in Structural Mechanics: App-
lications and Enhanced Treatment by Adaptive Mesh Refinement

17.00–17.25 Roland Pulch, Stephanie Knorr
Wavelet-based Adaptive Grids for Solving Multirate Partial Differential-
Algebraic Equations

17.25–17.50 Hannes Gruschinski, Bradley T Burchett, Richard A Layton, M. Bikdash
Numerical Aspects of Modeling and Control of Inverted Pendulum Using Kal-
man Filtering, DAEs, and Energy Based Lyapunov Functions
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Room 1.26

14.00–14.25 Zolt án Horváth
Unified approach to proving qualitative properties of Runge-Kutta methods with
applications

14.25–14.50 Mohammad Mahdi Hosseini
A Reliable Adomian Decomposition Method for Ordinary Differential Equations

14.50–15.15 Sergey Shindin, G. Yu. Kulikov
One Family of Symmetric One-Step Methods of Order Four

15.40–16.10 – Break –

16.10–16.35 Adrian Hill
Algebraically stable general linear methods

16.35–17.00 Laura Hewitt , Adrian T. Hill
Symplectic General Linear Methods

17.00–17.25 Daniel Weiß
General Linear Methods for Index-2 Differential-Algebraic Equations

17.25–17.50 Oleksiy Klymenko, I.B. Svir
Numerical solution of stiff ODEs modelling chemical kinetics

Room 1.27

14.00–14.25 Pierluigi Amodio , Felice Iavernaro
Symmetric Boundary Value Methods for Second Order Initial and Boundary Va-
lue Problems

14.25–14.50 Maria Jesús Moreta, Blanca Bujanda, Juan Carlos Jorge
Fractional step Runge-Kutta-Nyström methods for evolution problems of
second-order in time

14.50–15.15 Alessandra Sestini, Francesca Mazzia and Donato Trigiante
BS Methods and their Associated Spline

15.15–15.40 Thomas Milde
Computing Eigenfunctions of Singular Points in Nonlinear Parametrized Two-
Point BVPs

15.40–16.10 – Break –

16.10–16.35 Andreas Rößler, Kristian Debrabant
Efficient Stochastic Runge-Kutta Methods for the Weak Approximation of the
Solution of SDEs

16.35–17.00 Kristian Debrabant , Andreas R̈oßler
Continuous Extension of Stochastic Runge-Kutta methods for the Weak Appro-
ximation of SDEs
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17.00–17.25 Mostafa Zahri , Andreas R̈oßler, Mohammed Seaid
Method of Lines for Stochastic Partial Differential Equations

Room 1.29

14.00–14.25 Svetlana Dubinkina, J. E. Frank, J. G. Verwer
A fully Lagrangian constrained hydrostatic method for atmospheric flows

14.25–14.50 Matthias Gerdts
A Nonsmooth Newton’s Method for DAE Optimal Control Problems

14.50–15.15 René Lamour, Roswitha M̈arz
Tractability Index = Strangeness Index +1

15.15–15.40 Masoud Saravi, E. Babolian, R. England, M. Bromilow
System of Linear Differential Equations and Differential-Algebraic Equations

15.40–16.10 – Break –

16.10–16.35 Gennady Kulikov
Criticism of Asymptotic Global Error Expansion with a New Extrapolation
Theory

16.35–17.00 Alexander G. Kolpakov
The Network Models and Asymptotic of Capacity of a System of Closely-Placed
Bodies

17.00–17.25 Alexander A. Kolpakov
An Integrated Design Procedure for Design of Smart Structures

17.25–17.50 Sohrab Ali Yousefi, Ehsan Banifatemi
Legendre Scaling function for solving of generalized Emden-Fowler equations
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Tuesday, September 5, 2006

Room 3.28

8.30–9.20 Paul I. Barton, Benoit Chachuat
Simulation and Optimization of Partial Differential-Algebraic Equations with a
Separation of Time Scales

9.20–10.10 Christian Lubich , O. Koch and A. Nonnenmacher
Dynamical low-rank approximation

10.10–10.40 – Break –

Room 1.23

10.40–11.05 Jürgen Geiser, István Faraǵo
Stable Iterative Operator-Splitting Methods for Stiff-Problems of Parabolic
Equations: Theory and Applications

11.05–11.30 Achim Schädle, M. Lopez-Fernandez, Ch. Lubich
Fast and oblivous convolution

11.30–11.55 Mar ı́a López-Ferńandez, Christian Lubich, Ćesar Palencia, and Achim Schädle
Fast Runge-Kutta approximation of inhomogeneous parabolicequations

11.55–12.20 Michael Hanke, Donald O. Besong, Kristian Dreij, Ralf Morgenstern, Bengt
Jernstr̈om
A Numerical Model for Diffusion and Reaction in Cells via Homogenization

Room 1.26

10.40–11.05 Stefan Jebens, Rüdiger Weiner
Explicit parallel two-step peer methods

11.05–11.30 Bernhard A. Schmitt, Rüdiger Weiner
Parameter optimization for explicit parallel peer two-step methods

11.30–11.55 Zbigniew Bartoszewski
Implicit TSRK methods of order three and their continuous extensions

11.55–12.20 Bruce Boutelje
Multipliers and the nonlinear stability of linear multistep methods

Room 1.27

10.40–11.05 Adérito Ara újo, J. A. Ferreira
On the stability of a splitting method for integro-differential equations

11.05–11.30 Silvia Barbeiro, J.A.Ferreira
Integro-differential model of percutaneous drug absortion

11.30–11.55 Yadollah Ordokhani , Bahman Arabzadeh
A collocation method for solving nonlinear differential equations via hybrid of
rationalized Haar functions
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11.55–12.20 Vladimir Gorbunov , V.Yu. Sviridov
The normal spline method for numerical solution of linear singular differential
and integral equations

Room 1.29

10.40–11.05 Felix Kramer
Linear Multistep methods for quasi-singular perturbed problems

11.05–11.30 Igor Lutoshkin , V.K. Gorbunov
The parametrization method for numerical solution of singular differential equa-
tions

11.30–11.55 Lorenzo Trainelli , Carlo Bottasso
Optimal scaling of high index DAEs

11.55–12.20 Martin Arnold
High-order time integration and discontinuities in the right hand side

Room 1.23

Minisymposium: Exponential Integrators

14.00-14.30 Alexander Ostermann
Recent developments in exponential integrators

14.30-15.00 Paul Matthews, Hala Ashi
Which ETD method?

15.00-15.30 Bård Skaflestad, Anne Kværnø
Exponential integrators and spectral element methods

15.30-16.00 Mayya Tokman
Integration of large stiff systems of ODEs with exponentialpropagation iterative
(EPI) methods

16.00-16.30 – Break –

16.30-17.00 Mechthild Thalhammer
High-order exponential operator splitting methods for thetime-dependent
Schr̈odinger equation

17.00-17.30 Will Wright
The scaling and squaring technique for matrices related to the exponential

17.30-18.00 John Butcher
Order and stability of general linear methods

Room 1.26

Minisymposium: Numerical Methods in Mathematical Biology

14.00–14.45 Angela Stevens
Pattern Formation due to Cell Motion

14.45–15.10 Jośe Ferreira, P. Oliveira
Memory effects and random walks in reaction-transport systems
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15.10–15.35 Wilhelm Huisinga, A. Alfonsi, E. Cances, G. Turinici, B. Di Ventura
Deterministic models of chemical reactions coupled to stochastic reaction kine-
tics for efficient simulation of cellular systems

15.35–16.00 Nguyet Nga Pham Thi, B. P. Sommeijer, J. Huisman
Numerical treatment of integro-PDEs for Phytoplankton dynamics

16.00–16.30 – Break –

16.30–16.55 Rebecca Tyson, Chris Jordan, Justin Hebert, Lisa Fauci
Modelling nematode swimming behaviour using the immersed boundary method

16.55–17.20 Alessandro Veneziani, L. Formaggia, C. Vergara
Recent advances in multiscale modeling of the circulatory system

17.20–17.45 Bruce Ayati
Moving-Grid Galerkin Methods for Structured Multiscale Models of Biological
Systems

17.45–18.00 General discussion
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Wednesday, September 6, 2006

Room 3.28

8.30–9.20 Gustaf Söderlind
Adaptive Grids

9.20–10.10 Assyr Abdulle
Efficient coupling of micro-macro methods for hierarchicalmultiscale modeling

10.10–10.40 – Break –

Room 1.23

10.40–11.05 Klas Modin , Claus F̈uhrer and Gustaf S̈oderlind
Adaptivity in mechanical integrators

11.05–11.30 Jitse Niesen, Per Christian Moan
On the convergence of the Magnus series

Room 1.26

10.40–11.05 Nils Br äutigam, Walter Alt
Discretization of Elliptic Control Problems

11.05–11.30 Vasily Shapeev, Alexander Shapeev
Solving elliptic problems with singularities using finite difference schemes

Room 1.27

10.40–11.05 Marnix Van Daele, G. Vanden Berghe
Exponentially-fitted Obrechkoff methods

11.05–11.30 Veerle Ledoux, M. Van Daele and G. Vanden Berghe
The solution of singular Schrödinger problems using a piecewise perturbation
method

Room 1.29

10.40–11.05 Shamsul Qamar, Gerald Warnecke
High Resolution Finite Volume Schemes for Solving Population Balance Models

11.05–11.30 Leonid Semin, Denis Kharenko
Some aspects of collocation and least squares method for nonlinear hyperbolic
equations

14



Thursday, September 7, 2006

Room 3.28

8.30–9.20 Steven Ruuth, Barry Merriman
A Simple Method for Solving PDEs on Surfaces using the ClosestPoint

9.20–10.10 Ansgar Jüngel, Markus Brunk
Numerical coupling of electric circuits and semiconductordevices

10.10–10.40 – Break –

Room 1.23

10.40–11.05 Andr és Arrar ás, L. Portero, J.C. Jorge
An alternating direction scheme for the resolution of the non-linear two-
dimensional Richards’ equation on irregular grids

11.05–11.30 Oswald Knoth
Implementation of Rosenbrock methods for compressible atmospheric models

11.30–11.55 Gerd Steinebach
Numerical solution of 1D and 2D shallow water equations in the MATLAB en-
vironment

11.55–12.20 Mohammed Seaid
An Eulerian-Lagrangian Method for Coupled Parabolic-Hyperbolic Equations

Room 1.26

10.40–11.05 Caren Tischendorf
Abstract Differential-Algebraic Equations

11.05–11.30 Monica Selva Soto
Numerical analysis of a coupled model for the simulation of electrical circuits

11.30–11.55 Andreas Bartel, Michael Striebel and Michael G̈unther
PDAE Models and Multirate in Chip-Design: Modeling and Simulation

11.55–12.20 Kurt Chudej , Kati Sternberg, Hans Josef Pesch
Optimal load changes of a fuel cell - boundary control of a PDAE

Room 1.27

10.40–11.05 Valeriu Savcenco, W. Hundsdorfer, J.G. Verwer
A Multirate Time Stepping Strategy For Stiff ODEs

11.05–11.30 Andreas Pfeiffer
Sensitivity analysis of discontinuous multidisciplinarymodels

11.30–11.55 Daniel Kanth
Adaption of Partitioned Integration Strategies for the Simulation of Mechatronic
Systems

11.55–12.20 Brigida Pace, Felice Iavernaro, Donato Trigiante
On some conservation properties of symmetric methods applied to Hamiltonian
systems
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Room 1.29

10.40–11.05 Richard Naidoo
Numerical integration of the extended plasma fluid equations with SD3
Kurganov-Levy Scheme

11.05–11.30 Valeriy Perminov
A numerical solution of conjugate problem of forest fire initiation

11.30–11.55 M.R. Rahimpour
Numerical solution of a dynamic model for dual methanol reactor

11.55–12.20 Alexander Yu. Zakharov, Balashov A., Krupkina T.
Numerical Solutions of Design Nonplanar Transistor Structures. Hydrodyna-
mics Approach

Room 1.23

Minisymposium: Maxwell equations and Electromagnetics

14.00–14.30 Stefan Vandewalle, Tim Boonen
An algebraic multigrid method for high order time-discretizations of the div-grad
and curl-curl equations

14.30–15.00 Galina Benderskaya, Herbert De Gersem, Thomas Weiland
Numerical Integration of Field-Circuit Coupled Magnetoquasistatic Simulation
with Switching Elements

15.00–15.30 Róbert Horváth, István Faraǵo, Mike Botchev
A Krylov subspace splitting method for the time integrationof the Maxwell
equations

15.30–16.00 Georg Wimmer, Thorsten Steinmetz, Daniel Weida, Markus Clemens
Calculation of Transient Magnetic Fields Using 3R-Strategies

16.00–16.30 – Break –

16.30–17.15 Hans De Raedt
Advances in Unconditionally Stable Techniques

17.15–18.00 Mike Botchev
Recent developments in the time integration of the Maxwell equations

Room 1.26

Minisymposium: Mesh-free Methods

14.00–14.35 Jens Markus Melenk, Armin Iske and Maike Loehndorf
Convergence analysis of thin-plate spline interpolation

14.35–15.10 Marc Alexander Schweitzer
Adaptive Multilevel Techniques for Meshfree Methods

15.10–15.45 Csaba Ǵaspár
Multi-level Boundary Meshless Techniques
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15.45–16.15 – Break –

16.15–16.50 Michael Junk
Deterministic particle methods for high dimensional Fokker-Planck equations

16.50–17.25 Jörg Kuhnert
Finite Pointset Method (FPM): Meshfree Flow Solver in Continuum Mechanics

17.25–18.00 Bozidar Sarler
Meshfree Explicit Local Radial Basis Function Collocation Method for Micros-
copic and Macroscopic Phase Change Simulations

Friday, September 8, 2006

Room 3.28

8.30–9.20 Luigi Brugnano , Cecilia Magherini
Blended Implicit Methods: Theory and Numerics

9.20–10.10 Helmut Podhaisky, Rüdiger Weiner
Construction and implementation of peer methods

10.10–10.30 – Break –

10.30–11.20 Karel in’t Hout , Bruno Welfert
Stability of ADI schemes applied to convection-diffusion equations with mixed
derivative terms

11.20–12.10 Radu Serban
Sensitivity Analysis for ODE and DAE systems

12.10–13.00 Michael Günther, Andreas Bartel, Cathrin van Emmerich, Christian Kahl and
Kai Tappe
Computational Finance - a source of tasks for numerical analysis

13.00 Closing
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4 Abstracts

Efficient coupling of micro-macro methods for hierarchical multiscale modeling
Assyr Abdulle
(School of Mathematics, University of Edinburgh, United Kingdom)

Hierarchical multiscale methods based on micro-to-macro approaches have become increasingly
popular in multiscale modeling and simulation.
The global behavior of such methods depends on the hierarchyof solvers and on the strategy to
couple them. The challenge is thus to couple methods which have the desired properties at the
macro level and capable of sampling the microstructure withenough precision at the micro level.
In this talk we will discuss these issues. For finite element methods constructed within the frame-
work of the heterogeneous multiscale method (HMM), we propose a new micro-to-macro approach
with robust convergence rates and that is of almost linear complexity in the macro degrees of
freedom.

Symmetric Boundary Value Methods for Second Order Initial andBoundary Value Problems
Pierluigi Amodio , Felice Iavernaro
(Dipartimento di Matematica, Università di Bari, Italy)

We introduce symmetric Boundary Value Methods for the solution of second order initial and
boundary value problems (in particular Hamiltonian problems). We study the conditioning of the
methods and link it to the boundary loci of the roots of the associated characteristic polynomial.
One application will regard the analysis of systems admitting periodic solutions generated by the
superposition of both high and low frequencies. The aim is that of exploiting the good stability
properties of the symmetric methods to define an efficient filtering procedure (set up by the method
itself) in order to cancel out high frequencies (here understood as noise) and correctly reproduce
the remaining part of the spectrum.

On the stability of a splitting method for integro-differen tial equations
Adérito Ara újo, J. A. Ferreira
(University of Coimbra, Portugal)

The classical convection-diffusion-reaction equation has the unphysical property that if a sudden
change in the dependent variable is made at any point, it willbe felt instantly everywhere. These
phenomena violate the principle of causality.
Over the years, several authors have proposed modificationsin an effort to overcome the propaga-
tion speed defect. The purpuse of this talk is to study a modification to the classical model that take
in to account the memory effects. Besides the finite speed of propagation, we establish an energy
estimate to the exact solution. We also present a numerical method that have the same qualitative
property of the exact solution. Finally we ilustrate the theory with some numerical results.
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High-order time integration and discontinuities in the right hand side
Martin Arnold
(Martin Luther University Halle-Wittenberg, Germany)

The classical convergence analysis of high-order ODE and DAE time integration methods is based
on smoothness assumptions on the right hand side that are often violated in practical applications
because of look-up tables, spline interpolation of input data, . . . . Typically, the numerically ob-
served order of convergence for systems with discontinuities in (derivatives of) the right hand side
is, however, substantially larger than the one that is predicted by theory.
In the paper, this problem is studied for differential equations containing polynomial splines.
From a practical viewpoint, the most important special cases are linearC0 splines (spline order
2z + 2 = 2 with z = 0) and cubicC2 splines (spline order2z + 2 = 4 with z = 1).
Classical convergence results for ap-th order method predict an error of sizeO(hp̃) with p̃ = 1
if the right hand side of an ODE or of the differential part of aDAE contains aC0 spline. In
the case ofC2 splines a similar estimate with̃p = min (p, 2z) = min (p, 2) is obtained. In the
paper, a more detailed error analysis is presented that takes into account uniform error estimates
for interpolating polynomial splines. An error estimateO(hp̃) with p̃ = min (p, 2z + 2) is proven
that improves the classical error bound by a factor ofh2. Similar improvements of classical error
bounds are obtained for DAEs up to index 3 containing polynomial splines in their algebraic part.
The improved error estimates are in perfect agreement with numerical test results for a benchmark
problem from vehicle dynamics.

An alternating direction scheme for the resolution of the non-linear two-dimensional Ri-
chards’ equation on irregular grids
Andr és Arrar ás, L. Portero, J.C. Jorge
(Universidad Ṕublica de Navarra, Spain)

This work is devoted to the study of a new efficient time integrator for simulating two-dimensional
isothermal Darcian flows through isotropic and homogeneousporous media. Such phenomena are
modelled by a strongly non-linear parabolic partial differential equation (Richards’ equation) of
the following form:

∂θ (ψ)

∂t
= ∇ · [K (ψ)∇ψ (x, t)] +

∂K (ψ)

∂z
− S (ψ) , (1)

whereψ ≡ ψ (x, t) [L] is the pressure head,θ (ψ) [L2L−2] is the volumetric moisture content,
K (ψ) [LT−1] (K (ψ) ≥ K0 > 0) denotes the unsaturated hydraulic conductivity,S (ψ) [T−1] is
a source/sink term (for example, the root water uptake function in soil profiles),t [T ] is time and
x ≡ (x, z) [L] represents the vector of spatial dimensions (see[1]). Suitable initial and boundary
conditions are also added.

Concretely, we consider a modified fractionary implicit Euler method for discretizing the time
variable, which is combined with a generalized finite difference spatial discretization to deduce the
numerical algorithm. As we are dealing with irregular spatial domains, the approximation of the
differential operator makes use of logical rectangular grids and stencils which contain nine points
(see[2]). The scope of this work is to prove that it is possible to get an unconditionally convergent
scheme of alternating direction type. For doing this, we decompose the difference operator in
three terms: two of them will have a three-point stencil (in the same way as in the classical ADI
schemes), acting in implicit mode, and the third one, which will be treated explicitly, will contain
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the coefficients of the stencil corners. In this framework, the calculation of each internal stage
is reduced to the resolution of simple sets of tridiagonal linear systems, after the application of
an iterative procedure for solving the non-linear systems of equations. Moreover, differing from
the classical fractionary implicit Euler discretizations, the source/sink term will also be treated as
an explicit term, in order to improve the convergence rate ofthe iterative procedure previously
mentioned (see[1]).
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Moving-Grid Galerkin Methods for Structured Multiscale Models of Biological Systems
Bruce P. Ayati
(Southern Methodist University, USA)

We present methods for continuous models of biological systems where the transport in a variable
representing age is computed by the movement of the age grid.Approximation error is the only
meaningful source of error in age, resulting in superconvergence properties for the methods. We
discuss the role of this computational method for systems with dependence on age, space and time,
and provide an overview of the convergence results to date. We close by presenting example com-
putations for Proteus mirabilis swarm colony development,and, if time permits, biofilm growth.

Integro-differential model of percutaneous drug absortion
Silvia Barbeiro, J.A.Ferreira
(University of Coimbra, Portugal)

In this talk we propose a model for percutaneous absorption of a drug which consists in integro-
differential equations with appropriate initial and boundary conditions. We study the qualitative
properties of the model and its numerical approximation. Simulation of described numerical me-
thods is carried out with various values of the parameters.

PDAE Models and Multirate in Chip-Design: Modeling and Simulation
Andreas Bartel, Michael Striebel and Michael G̈unther
(University of Wuppertal, Applied Mathematics, Germany)

Commonly, electric circuits are described by systems of time-dependent differential-algebraic
equations (DAEs). The effect of down-scaling renders secondary effects more and more import-
ant. There are, for instance, thermal-conduction, transmission line phenomena or complex semi-
conductor behavior. Here more sophisticated models enrichthe DAE by spatial systems, which
results in a partial differential-algebraic equation (PDAE) depending on both space and time. Both
DAE and PDAE exhibit a very strong and pronounced multiscalebehavior. Thus, an efficient
simulation technique will demand to design a dedicated algorithm to these systems.
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Ideally, for heat conduction, only a fast and a slow subsystem exists (on the coarse scale). These
can be quasi-decoupled over a communication step. Whereas inthe view of a pure circuit, we have
not only latent and active variables, but also several levels of activity in between. So we would like
to have a kind of distributed time integration scheme. Based on Rosenbrock-Wanner methods an
algorithm of a hierachical multirate scheme was developed to allow for a simple generalization to
more than two time scales.
In this talk, we discuss the PDAE-setups in chip-design and their properties. Furthermore we give
an overview of current developments of multirate methods inthis field and we will present and
discuss simulation results for the hierachical one-step scheme.

Simulation and Optimization of Partial Differential-Alge braic Equations with a Separation
of Time Scales
Paul Barton, Benoit Chachuat
(MIT, USA)

Problems that exhibit multiple time scales arise frequently in many scientific and engineering
fields. The modeling and simulation of such systems leads naturally to singular perturbation
models. For systems of partial differential-algebraic equations (PDAEs) in time and one spatial
dimension, the corresponding quasi-steady-state models yields a reduced set of PDAEs (slow va-
riables), subject to a set of differential-algebraic equations (DAEs) in the spatial dimension (fast
variables).
In this presentation, we shall consider a particular class of one-dimensional, quasi-linear PDAEs
with a separation of time scales such that (i) the slow variables are lumped (i.e., do not depend
on the spatial dimension), and (ii) the hyperbolic variables in the fast subsystem have all their
characteristics pointing in the same direction. Under these conditions, the quasi-steady-state model
yields two decoupled subsystems, a set of DAEs in time, subject to a set of DAEs in the spatial
dimension; hence the nameDAEs embedded DAEs.
There are several advantages in using the DAEs embedded DAEsapproach over the conventional
method of lines (MOL) for such problems. First and foremost,this approach guarantees the ac-
curacy of the solution, in the limit of the slow model approximation validity, since rigorous error
control can be performed by numerical solvers regarding thetime and space steps used in either
set of differential equations. This removes the need of choosing a somewhat arbitrary discretiza-
tion as it is the case with the MOL. Furthermore, the DAEs embedded DAEs approach requires
solution of much smaller sets of differential equations than with the MOL approach. Therefore,
not only does the proposed approach improve the reliabilityof the simulations by removing the
need of initializing large sets of DAEs, but it also typically outperforms the conventional MOL in
terms of computational time whenever the use of fine meshes becomes necessary. This also makes
the DAEs embedded DAEs simulation approach particularly well suited for embedding within a
mathematical programming formulation for optimization purposes.
The developed approach shall be demonstrated on an application related to the start-up simulation
and optimizaton of micro-scale chemical processes for portable power generation.
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Implicit TSRK methods of order three and their continuous extensions
Zbigniew Bartoszewski
(Gdansk University of Technology, Poland)

In the talk the construction of implicit two-step Runge-Kutta methods and their continuous exten-
sions that preserve the order of the original TSRK methods will be presented. Similar explicit
TSRK methods recently constructed by Z. Bartoszewski and Z. Jackiewicz TSRK are based on
approximations to the scaled derivatives of the solution upto the order3 (Nordsieck vector) and
have proved to be quite efficient and robust. The results of the numerical tests of their implicit
counterparts carried out on stiff ODEs and DDEs will also be presented in the talk.

Numerical Integration of Field-Circuit Coupled Magnetoquasistatic Simulation with Swit-
ching Elements
Galina Benderskaya, Herbert De Gersem, Thomas Weiland
(TU Darmstadt, Institut f̈ur Theorie Elektromagnetischer Felder (TEMF), Germany)

The 3D transient field-circuit coupled formulation with theswitching elements discretized by the
Finite Integration Technique (FIT) represents a system of differential-algebraic equations (DAE)
of index 1 and can be solved by any suitable DAE integrator. Standard numerical integration
algorithms for DAE systems always assume that the variablesbeing integrated as well as their de-
rivatives stay continuous during the whole simulation time. Mentioned coupled system, however,
exhibits hybrid (continuous/discrete) behavior due to thepresence of switching elements in the
circuit part of the model. The discontinuity handling algorithm presented here consists of three
steps: event detection, event location and determination of consistent initial conditions. For the
last step, a special technique is proposed by which highly transient phenomena at the circuit side
are only resolved by the circuit model avoiding unnecessaryevaluations of the field problem.

Recent developments in the time integration of the Maxwell equations
Mike Botchev
(University of Twente, The Netherlands)

The Maxwell equations are used in the modeling of a vast rangeof electromagnetic phenomena
and comprise a class of partial differential equations which can have different properties. Ideally,
a choice of a method for the numerical solution of the Maxwellequations should be determined by
the properties of the equations for a particular case. It is therefore no surprise that numerics used
for time integration of the Maxwell equations is a versatilefamily of methods based on various
ideas and approaches.
In this talk we try to digest some recent developments in the time integration of the Maxwell
equations, with an emphasis on high-order methods, symplectic methods and methods involving
matrix functions.

Multipliers and the nonlinear stability of linear multistep methods
Bruce Boutelje
(University of Bath, United Kingdom)

The analysis of the stability ofA-stable multistep methods for solving nonlinear stiff systems has
long been understood. Unfortunately, Dahlquist’s second barrier restricts the order of these me-
thods to2. To analyse the nonlinear stability of higher-orderA(α)-stable methods, Nevanlinna &
Odeh (1981) imported the idea of multipliers from control theory. We re-examine this work, paying
particular attention to the restrictions on the nonlinearity. Results similar to those of Nevanlinna
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and Odeh are recovered using a new approach, depending uponZ-transform and convolution me-
thods from control theory. Multipliers are constructed to obtain new stability results, under suitable
restrictions on the nonlinearity.

A fourth-order implicit scheme for the two-dimensional sine-Gordon equation
Athanassios Bratsos
(Technological Educational Institution (T.E.I.) of Athens, Greece)

The two-dimensional sine-Gordon (SG) equation is given by

utt = uxx + uyy − φ (x, y) sinu

with u = u (x, y, t) in an appropriate regionΩ for t > 0. A rational approximant of order4,
which is applied to a three-time level recurrence relation,is used to transform the SG equation
into a second-order initial-value problem. To avoid solving the resulting nonlinear system an
appropriate predictor-corrector (P-C) scheme, in which thepredictor is of order2, is applied. The
behavior of the proposed P-C scheme is tested numerically toline and ring solitons known from
the bibliography, regarding SG equation and conclusions for both the undamped and the damped
problem are derived.
AcknowledgmentThis research was co-funded 75% by E.E. and 25% by the Greek Government
under the framework of the Education and Initial VocationalTraining Program - Archimedes, Tech-
nological Educational Institution (T.E.I.) of Athens project “Computational Methods for Applied
Technological Problems”.

Discretization of Elliptic Control Problems
Nils Br äutigam, Walter Alt
(Friedrich-Schiller-University Jena, Germany)

We consider linear-quadratic problems of optimal control with an elliptic state equation and control
constraints. After a few results of theoretical character we discretize the restriction and the control
with the method of Finite Differences. Based on this discretization we develop error estimates for
the solution of the discret problem und further we find a feasible controlũ with

‖ū− ũ‖∞ ≤ c V T
0

˙̄uh2,

whereū stands for the optimal control undc is a constant independent from̄u andh.

Blended Implicit Methods: Theory and Numerics
Luigi Brugnano , Cecilia Magherini
(Universita degli Studi, Firenze, Italy)

The use of implicit numerical methods is mandatory when solving general stiff ODE/DAE pro-
blems. Their use, in turn, requires the solution of a corresponding discrete problem, which is one
of the main concerns in the actual implementation of the methods. In this respect, Blended Impli-
cit Methods [1,2,6] provide a general framework for the efficient solution of the discrete problems
generated by block implicit methods. In this talk, we reviewthe main facts concerning blended
implicit methods for the numerical solution of ODE [3] and DAE [5] problems, and their exten-
sion for solving second order problems [4]. A few numerical tests obtained with the computational
codeBiMD [7], implementing a variable order-variable stepsize blended implicit method, are also
reported, in order to confirm the effectiveness of the approach.
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Order and stability of general linear methods
John Butcher
(The University of Auckland, New Zealand)

The conflict between stability and order of accuracy is well-known and is exemplified by the two
Dahlquist barriers as well as the Ehle and Daniel-Moore barriers. Although the famous order
star theory is an ideal tool for understanding and settling questions of this type, an alternative
approach, based on order arrows, is also available. Some examples of the use of order arrows
in the understanding of these barriers will be discussed, with particular application to Padé and
generalised Padé approximations. Consider a generalised Padé approximation defined by

Φ(w, z) := P0(z)w
r + P1(z)w

r−1 + · · · + Pr(z) = 0,

whereΦ(exp(z), z) = O(zp+1) with P (0) = 1 and the orderp is given by

p =
r

∑

i=0

(1 + ni) − 1,

with ni = deg(Pi). Of particular interest is the so-called Butcher–Chipman conjecture, which
speculates that2n0 − p ∈ {0, 1, 2} is necessary for A-stability.

Runge-Kutta convolution quadrature methods for equationswith memory: The non-analytic
case
Mari Paz Calvo, E. Cuesta and C. Palencia
(Universidad de Valladolid, Spain)

Runge-Kutta methods, initially designed for the time integration of ODEs, can also be adapted
to approximate convolution integrals, at least in case the kernel is sectorial [2]. This leads, in a
natural way, to numerical schemes for the time integration of abstract convolution equations of the
form

u(t) = u0 +

∫ t

0

A(t− s)u(s) ds, t > 0.
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In the present talk we address two main issues. First, we extend the Runge-Kutta convolution
quadrature to the non-sectorial framework. Second, in the spirit of [1], we provide a representation
of the numerical solution in terms of the continuous one, which allows us to derive interesting
qualitative properties of the numerical solution. Numerical results are also provided.

References
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Optimal load changes of a fuel cell - boundary control of a PDAE
Kurt Chudej , Kati Sternberg, Hans Josef Pesch
(Universtiẗat Bayreuth, Lehrstuhl für Ingenieurmathematik, Germany)

Molten carbonate fuel cells (MCFC) are especially well suitedfor stationary power plants if their
process heat is used to increase their efficiency. MCFCs seem tobecome soon competitive compa-
red with traditional power plants. The MCFC stationary powerplant at the university hospital in
Magdeburg reached a worldwide record of 30 000 hours of operation in May 2006. The dynamic
behaviour of MCFCs can be modelled mathematically by a hierarchy of systems of partial diffe-
rential algebraic equations (PDAE) in 1D or 2D. Integral terms appear and the nonlinear boundary
conditions are given partly by a DAE system.
These large PDAE systems of dimension between roughly 10 and30 equations are discretized by
the method of lines, yielding huge dimensional DAEs.
We will present new computationally very expensive numerical results of optimal control during
load changes for a 2D dynamical MCFC model. Faster load changes are especially welcome, from
an economical and operational view point, if the very crucial constraints on the temperature field
in the interior of the fuel cell are fulfilled.
Acknowledgement:This research was funded by the BMBF within the projectOptimierte Prozess-
führung von Brennstoffzellensystemen mit Methoden der Nichtlinearen Dynamik.
We thank especially Prof. Dr.-Ing. Kai Sundmacher and Dr.-Ing. Peter Heidebrecht (University of
Magdeburg / Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg) and
Dipl.-Ing. J. Berndt and Dipl.-Ing. M. Koch (IPF Heizkraftwerksbetriebsges. mbH Magdeburg) for
their support.
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Continuous Extension of Stochastic Runge-Kutta methods forthe Weak Approximation of
SDEs
Kristian Debrabant , Andreas R̈oßler
(TU Darmstadt, FB Mathematik, Germany)

To obtain the solution of an ordinary differential equationat prescribed dense output points, one
can use the well-known class of continuous Runge-Kutta methods. In our talk, we extend this idea
to a class of stochastic Runge-Kutta methods for the approximation of Itô stochastic differential
equations with respect to a multi-dimensional Wiener process.

Advances in Unconditionally Stable Techniques
Hans De Raedt
(University of Groningen, The Netherlands)

We review recent progress in the development of unconditionally stable FDTD algorithms to solve
Maxwell’s equations. We present a general, unified framework that facilitates the construction of
FDTD algorithms (including the Yee algorithm) with specificproperties. The approach is construc-
tive and modular: It is a recipe for constructing unconditionally stable algorithms that are tuned
to particular problems and that can be combined with other unconditionally stable algorithms to
solve more complicated problems. We also review recent progress in the development of one-step
algorithms, based on Chebyshev and Faber polynomials, for solving Maxwell’s equations.

A fully Lagrangian constrained hydrostatic method for atmospheric flows
Svetlana Dubinkina, J. E. Frank, J. G. Verwer
(CWI, Netherlands)

The hydrostatic primitive equations of motion, which have been used in large-scale weather pre-
diction over the last decades, are considered within a Lagrangian framework. This model is dis-
cretized by extending the Hamiltonian Particle-Mesh method of Gottwald et al. (2002), in which
the particles represent large masses of fluid. The new model is a 2D hydrostatic one full ideal
fluid equations in potential temperature function formulation, such that the particle motion is cons-
trained to preserve a hydrostatic state. The spatial truncation is (at least locally) Hamiltonian,
making integration with a symplectic method appropriate. Acode for studying the air flow in the
atmosphere was made and successfully tested for a two-dimensional problem.

Memory effects and random walks in reaction-transport systems
Jośe Ferreira, P. Oliveira
(University of Coimbra, Portugal)

In this paper we study continuous and discrete models to describe reaction transport systems with
memory and long range interaction. In these models the transport process is described by a non
Brownian random walk model and the memory is induced by a waiting time distribution of the
gamma type. Numerical results illustrating the behavior ofthe solution of discrete models are also
included.
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Local conservation and multisymplectic discretizations for Hamiltonian PDEs
Jason Frank, S. Reich, B. Moore
(CWI, Amsterdam, The Netherlands)

Many Hamiltonian PDEs can be given a space-time multi-Hamiltonian structure, as proposed by
Bridges [1, 2], among others. The formal structure is

Jut +Kux = ∇uS(u), (1)

whereJ andK are constant, skew-symmetric matrices. Some examples of PDEs that can be cast
in this form are classical soliton equations such as the Korteweg-de Vries, nonlinear Schrödinger,
and sine-Gordon equations; Maxwell’s equations and ideal fluids.
WhenS(u) is independent oft and/orx, Noether’s theorem applied to (1) yields local conservation
laws of energy and/or momentum. The above formalism gives easy access to these conservation
laws, as noted by Bridges in [1].
Multisymplectic discretizations for (1) as introduced by Reich [3] are constructed by applying sym-
plectic one-step methods to both space and time derivatives. For semi-discretizations, Noether’s
theorem still implies retention of local conservation lawsassociated with thenondiscretized coor-
dinates (i.e. spatial semi-discretizations still possesssemi-discrete energy conservation laws, etc.)
Furthermore, for Gauss-Legendre space-time discretizations oflinear PDEs, where the conserved
densities and fluxes are quadratic, fully discrete energy-momentum conservation laws are admit-
ted.
A question that has been asked before in various contexts is,what is the significance oflocal
conservation for numerical discretizations? Is this more than just bookkeeping for conservation
of the global quantity? Although we will not attempt to answer this question, some benefits are
conceivable: local conservation may be useful in cases where, due to boundary conditions, glo-
bal conservation fails to hold. Furthermore, locally conservative methods allow construction of
conservative schemes on nonuniform grids through a building-block approach.
Recently [4], we have shown that the Gauss-Legendre methods,besides satisfying a local energy
conservation law for linear PDEs, also enforce the correctdirectionof energy flow, through pre-
servation of the sign of group velocity. This is certainly also a local property, and it is a necessary
condition for the avoidance of internally reflected waves byGL space-time discretizations on non-
uniform grids. Methods with this property are necessarily implicit [5].
WhenS = S(u, x, t) in (1), neither energy nor momentum is conserved. However, if the de-
pendence onx andt is ‘slow’ compared to the active frequency/wave number in the solution, the
idea of an adiabatic invariant can be generalized to yield a local conservation law ofwave action,
related to translation invariance with respect to phase forthe phase-averaged system. Numerical
experiments suggest the long time conservation of the totalaction [6, 7].
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Multi-level Boundary Meshless Techniques
Csaba Ǵaspár
(Sźechenyi Istv́an University, Department of Mathematics, Hungary)

The method of radial basis functions is an excellent tool forsolving interpolation problems as
well as creating meshless methods for various types of partial differential equations. However, it
produces large, dense and often severely ill-conditioned systems of linear equations, which cau-
ses computational difficulties. This remains the case even if a boundary version of the method is
applied. In this talk, the method of radial basis functions is applied in an indirect way by using
the direct multi-elliptic interpolation method. Here the interpolation function is created by solving
an (at least) fourth order multi-elliptic partial differential equation supplied with the interpola-
tion conditions as a special boundary condition. In practice, this can be performed by applying
quadtree/octtree subdivision and multi-level techniques, which results in a robust and computa-
tionally stable procedure. However, if the boundary is discretized by relatively few points, this
approach fails to work correctly, since it produces boundary singularities. To avoid this phenome-
non, the idea of local schemes is applied. Instead of the use of local interpolation based on radial
basis functions, however, global interpolation is used based on the direct multi-elliptic interpola-
tion method. This procedure results in re-globalized schemes, the computational cost of which is
far less than that of the traditional radial basis function approach. At the same time, the use of
large, dense and ill-conditioned matrices are also avoided. The technique becomes especially sim-
ple in case of boundary problems, and, in contrast to some previous methods, contains no scaling
parameter to be optimized. Numerical examples are also presented.

Stable Iterative Operator-Splitting Methods for Stiff-Pro blems of Parabolic Equations: Theory
and Applications
Jürgen Geiser, István Faraǵo
(Humboldt-University, Department of Mathematics, Berlin,Germany)

In this paper we present a modified method of the iterative splitting methods, see [1]. We discuss
the consistency and stability analysis for the method and present the prestepping and weighting
methods, see [2] and [3]. We analyze the local splitting error of the method. Numerical examples
are given in order to demonstrate the method.
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A Nonsmooth Newton’s Method for DAE Optimal Control Problems
Matthias Gerdts
(University of Hamburg, Germany)

We investigate a nonsmooth Newton’s method for the numerical solution of Index-2 DAE optimal
control problems subject to mixed control-state constraints. The necessary conditions are stated in
terms of a local minimum principle. By use of the Fischer-Burmeister function the local minimum
principle is transformed into an equivalent nonlinear and nonsmooth equation in appropriate Ba-
nach spaces. This nonlinear and nonsmooth equation is solved by a nonsmooth Newton’s method.
We prove the global convergence and the locally quadratic convergence under certain regularity
conditions. The globalized method is based on the minimization of the squared residual norm.

FE time-stepping using high-order two-step PEER methods
Alf Gerisch, Jens Lang, Helmut Podhaisky, Rüdiger Weiner
(Martin-Luther-Universiẗat Halle-Wittenberg, Germany)

Linearly-implicit two-step PEER methods are successfullyapplied in the numerical solution of
ordinary differential and differential-algebraic equations. One of their strengths is that even high-
order methods do not show order reduction in computations for stiff problems. With this property,
PEER methods commend themselves as time-stepping schemes in Finite Element calculations for
time-dependent partial differential equations (PDEs).
We have included a class of linearly-implicit two-step PEERmethods in the Finite Element soft-
ware Kardos. There PDEs are solved following the Rothe method, i.e. first discretised in time,
leading to linear elliptic problems in each stage of the PEERmethod. In this talk we describe how
the PEER methods have been adapted to fit into the Finite Element framework, discuss the starting
procedure of the two-step schemes and consider difficultieswhich arise in the time-step control.
The implementation is tested for PEER methods of orders three to five on a selection of test pro-
blems.
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The normal spline method for numerical solution of linear singular differential and integral
equations
Vladimir Gorbunov , V.Yu. Sviridov
(Ulyanovsk state university, Russia)

The normal spline-collocation (NS) method for linear ODEs,ADEs and integral equations [1, 2,
3] are developing for the problem

A(t)ẋ(t) +B(t)x(t) −

∫

∞

0

K(t, s)x(s)ds = f(t), 0 ≤ t <∞,

with boundary conditionsx(0) = x0, x(∞) = 0. Herex, f ∈ Rn, A(t), B(t), K(t, s) are
squaren-order arbitrary degenerate matrices. The functionf(t) and the matrices coefficients are
so smooth as it needs to guarantee appropriate smoothness ofthe solutionx(t) that exists on ass-
umption and belongs to the Hilbert-Sobolev spaceW l

2,n[0, ∞) (l is integer) with norm

‖x‖l,n =

[

n
∑

i=1

∫

∞

0

[

(xi(s))
2 +

(

x
(l)
i (s)

)2
]

ds

]1/2

.

Particularly the Laplace transformation’s numerical inversion, when the image is determined ap-
proximately, is considered.
The NS is based on the construction of the natural system of coordinate function that are generated
by reproducing kernel of the used space and by coefficients ofthe equation to be solved. The
problem on the infinite interval[0,∞) in frame of the NS can be reformulated on the standard
segment[0, 1] via singular time transformationτ = exp(−t). In this case a simpler polynomial
type norm inW l

2,n[0, 1] [2, 3] can be used.
Results of solutions of test problems by different variants of the NS will be presented.
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LNCS 2658, Springer-Verlag, Berlin, Heidelberg. 2003. P. 492-499.

Numerical Aspects of Modeling and Control of Inverted Pendulum Using Kalman Filtering,
DAEs, and Energy Based Lyapunov Functions
Hannes Gruschinski, Bradley T Burchett, Richard A Layton, M. Bikdash
(Rose-Hulman Institute of Technology, Terre Haute, IN, USA)

In this paper a continuous-time extended Kalman filter (EKF)in form of a sequential state estima-
tion technique for nonlinear DAEs is applied to a constrained class of multibody systems formu-
lated as an index 3 Hessenberg DAE system. The filter equations are used to realize a nonlinear
Lyapunov based control law which swings up the inverted pendulum. This control law depends on
good estimates of non-measurable states including the Lagrangian multipliers. Then the pendulum
is stabilized around its unstable equilibrium using linearstate feedback. Both the inverted pendu-
lum on the cart and on the disc (Furuta pendulum) are treated.In this talk we discuss numerical
aspects of solving the state estimation equations formulated as DAEs and implementation of the
control strategy.
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Computational Finance - a source of tasks for numerical analysis
Michael Günther, Andreas Bartel, Cathrin van Emmerich, Christian Kahl and Kai Tappe
(Bergische Universiẗat Wuppertal, Fachbereich Mathematik und Naturwissenschaften, Lehrstuhl
für Angewandte Mathematik / Numerische Analysis, Germany)

In finance application, one often has to compute the - in some sense - fair price of a financial
derivative. For plain-vanilla options and underlyings driven by the geometric Brownian motion, a
simple closed solution exists: the famous Black-Scholes formula.
To accomplish this task for more realistic market models and/or exotic options, one has to combine
modelling with numerical and stochastic analysis tools. Wewill review this approach by inspecting
different examples which ask for more sophisticated numerical techniques: from pricing Bermudan
interest rate derivatives, hedging basket risks in incomplete markets to simulating numerically
stochastic volatility models.
This work has been partially funded by ABN AMRO London, UK, NRWBank Düsseldorf and
Sparkasse Leverkusen, both Germany.

A Numerical Model for Diffusion and Reaction in Cells via Homogenization
Michael Hanke, Donald O. Besong, Kristian Dreij, Ralf Morgenstern, Bengt Jernstr̈om
(Royal Institute of Technology, Sweden)

When mammalian cells are exposed to foreign and potentially harmful compounds a series of
events takes place. Following uptake the substance is distributed in different intracellular com-
partments by diffusion, absortion and desorption. The majority of the compound is either dis-
solved in the aqeous phase, the cytoplasm, or in the lipophilic phase, the membranes. Parallel
to diffusion and absorption/dissorption bioactivation/biotransformation by different soluble and
membrane bound enzymes takes place.
A human cell consists schematically of an outer cellular membrane, a cytoplasm containing a large
number of organelles (mitochondria, endoplasmatic reticulum etc.), a nuclear membrane and fi-
nally the cellular nucleus containing DNA. The organelle membranes create a complex and dense
system of membranes or subdomains throughout the cytoplasm. The mathematical description
leads to a system of reaction-diffusion equations in a complex geometrical domain, dominated by
thin membraneous structures with similar physical and chemical properties. If these structures are
treated as separate subdomains, any model becomes computationally very expensive. Moreover,
due to the natural variations in the cell structures, every individual cell needs its own mathematial
model. In order to make the system numerically treatable while at the same time retaining the es-
sential features of the metabolism under consideration, wewill develop a way of homogenizing the
cytoplasm, aiming at a manageable system of reaction-diffusion equations for the various species.

31



Symplectic General Linear Methods
Laura Hewitt , Adrian T. Hill
(University of Bath, United Kingdom)

For many applications, a numerical method for the solution of ODEs should ideally be algebrai-
cally stable. For general linear methods this is equivalentto a certain matrixM(G) being positive
semi-definite; a complicated criterion to work with when searching for methods.
It is conjectured that non-trivial general linear methods cannot be symplectic, however they may be
G-symplectic; i.e.M(G) = 0. This is simpler to work with thanM(G) positive semi-definite and
trivially implies algebraic stability. Using the G-symplectic condition in the cases = r = 2 and
the order equations, we derive our method in terms of systemsof equations. We find diagonally
implicit general linear methods up to and including total order four, stage order three.

Algebraically stable general linear methods
Adrian T. Hill
(University of Bath, United Kingdom)

Butcher’s 1987 BIT paper on nonlinear stability is rich in original and significant insights into the
structure of general linear methods. We explore some of the consequences of this extraordinary
but neglected paper. New easily testable criteria for algebraic stability are derived, and we discuss
the construction of efficient higher order algebraically stable methods.

A Krylov subspace splitting method for the time integration of the Maxwell equations
Róbert Horváth, István Faraǵo, Mike Botchev
(University of West-Hungary, Hungary)

For the time integration of the Maxwell equations discretized in space with finite differences or
finite elements, we analyze several operator splitting schemes where some of the split steps can be
done exactly in time, without numerical error. This can be achieved, for example, by employing
exponential time integration schemes. Presented analysisand numerical experiments illustrate cir-
cumstances under which the proposed scheme appear to be a very efficient tool for time integration
of the Maxwell equations.

Unified approach to proving qualitative properties of Runge-Kutta methods with applicati-
ons
Zolt án Horváth
(Sźechenyi Istv́an University, Hungary)

In this lecture we consider Runge-Kutta approximations to solutions of IVPs for ODEs, which
arise typically from semidiscretization of time dependentPDE problems modeling some physical,
chemical, biological processes, e.g. diffusion, linear and nonlinear transport, population dynamics.
The focus is on examining whether the discrete version of qualitative properties of the IVP such
as positivity, monotonicity, contractivity, boundedness, TVB property were preserved by the RK
approximations. We note that the presence of these properties often permits an elegant and po-
werful analysis of the continuous and discrete time problems both. Moreover, in the talk we
shall demonstrate by computational experiments to different type of problems (diffusion-reaction
equations, Euler equations of gas dynamics) that violatingthese qualitative properties may cause
break-down of the code.
In this talk we present a unified formulation of the examination of different qualitative properties in
terms of dynamical systems with investigating forward invariance of or generalized monotonicity
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w.r.t. suitable convex, closed sets. As one of the main result we formulate simple, explicit formulas
for the time step size of the RK discretizations under which the examined discrete qualitative pro-
perty is preserved. Finally, we show how these results applyin the analysis of long term behaviour
of population dynamics and computational experiments of some applied problems as well.

A Reliable Adomian Decomposition Method for Ordinary Differential Equations
Mohammad Mahdi Hosseini
(Department of Mathematics, Yazd University, Iran)

In recent years, the studies of initial value problems in thesecond order ordinary differential equa-
tions (ODEs) have attracted the attention of many mathematicians and physicists. A large amount
of literature developed concerning Adomian decompositionmethod, and the related modification
to investigate various scientific models. Here, it is attempt to introduce a new reliable modification
of Adomian decomposition method. For this reason, a new differential operator is proposed which
can be used for singular and nonsingular ODEs. In addition, the proposed method is tested for
some examples and the obtained results show the advantage using this method.

Deterministic models of chemical reactions coupled to stochastic reaction kinetics for efficient
simulation of cellular systems
Wilhelm Huisinga, A. Alfonsi, E. Cances, G. Turinici, B. Di Ventura
(DFG-Forschungszentrum MATHEON und Freie Universität Berlin, Germany)

When analyzing metabolic networks involving large numbers of molecules, the deterministic mo-
del for chemical reaction systems based on the law of mass action has been quite successfully
applied in mathematical biology. In the past years, however, it has become evident that in regu-
latory networks, where often some chemical species are present at very low numbers, stochastic
effects play an important role, leading to an increasing in stochastic modelling attempts. When
aiming at a thorough investigation of cellular processes involving gene-regulatory networks, si-
gnalling pathways and metabolic networks, the question arises how to efficiently and accurately
simulate such coupled system.
We present an adaptive and efficient approach for the simulation of hybrid stochastic and determi-
nistic reaction systems. Its algorithmic realization allows for adaptive step-size integration of the
deterministic equations while at the same time accurately tracing the stochastic reaction events.
The mathematical derivation is given and numerical examples are presented that demonstrate the
power of hybrid simulations.

Numerical Simulation of Streamers
Willem Hundsdorfer
(CWI, The Netherlands)

Streamers are conduction channels that are rapidly formed in an isolating medium (e.g. air) under
influence of an electric field. When the conducting channel bridges the gap between objects with
different charges, an electric discharge follows (e.g. lightning).
The development of streamers can be described by relativelysimple models, consisting of
convection-diffusion-reaction equations for the densities of charged particles, together with a Pois-
son equation for the electric potential. The numerical solution of these coupled equations is com-
plicated, however, due to (i) the multiscale character of the problems and (ii) instability of homo-
geneous states.
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In this talk the numerical issues will be discussed. A local grid refinement procedure will be
described, together with simulation results of streamers.This work is based on joint research with
Carolynne Montijn and Ute Ebert.

Stability of ADI schemes applied to convection-diffusion equations with mixed derivative
terms
Karel in’t Hout , Bruno Welfert
(University of Antwerp, Belgium)

In many modern application areas, mathematical models are used that involve initial-boundary
value problems for convection-diffusion equations in spatial dimensions that are greater than one.
The semi-discretization of such equations leads to huge systems of stiff ordinary differential equa-
tions that cannot be solved effectively by standard implicit numerical methods, and tailored time-
integration methods are required. In the past decades operator splitting schemes of the alternating
direction implicit (ADI) type have proven to be a successfultool for efficiently dealing with many
of these systems.
In this talk we are interested in multi-dimensional convection-diffusion problems where mixed
spatial derivative terms are present. Convection-diffusion problems of this kind arise naturally in
various areas, such as in financial mathematics where they appear e.g. when pricing options on a
number of correlated assets. The potential use of ADI schemes for the numerical solution of such
problems has not yet been explored to great extent in the literature; some promising first results
were obtained by McKee & Mitchell (1970), Craig & Sneyd (1988,1990) and McKee, Wall &
Wilson (1996).
In this talk we shall consider three general ADI schemes for the time-integration of semi-discrete
multi-dimensional convection-diffusion problems havingmixed derivative terms. We investigate
the favourable property of unconditional stability and prove that, under appropriate assumptions,
all three ADI schemes share this property when applied to these problems. Our results substantially
extend those from the literature mentioned above. Numerical experiments are given to illustrate
the presence of unconditional stability as well as showing the actual convergence behaviour of the
ADI schemes.

34



Dynamical low-rank approximation of the chemical master equation
Tobias Jahnke, Wilhelm Huisinga
(Freie Universiẗat Berlin, Germany)

Biochemical reaction systems are traditionally modelled byordinary differential equations (ODEs)
representing the concentrations of the substances. The so-called reaction-rate approach, however,
is inappropriate if some of the substances are present in a low number of molecules and stochastic
fluctuations play an important role for the evolution. In such a situation, a more accurate model is
provided by the chemical master equation, which describes the evolution of a probability density
on the state space of all possible vectors of molecule numbers.
The chemical master equation can be considered as a difference-differential equation, a “discrete
PDE”, or as a system of ODEs. For its numerical treatment, themain difficulty is the high number
of degrees of freedom. In contrast to the traditional reaction-rate approach which requires only one
ODE persubstance, the chemical master equation consists of one ODE perstate. Even a rather
small system of three species with molecule numbers varyingbetween, say, 0 and 99, contains1003

states, and hence1000000 coupled ODEs have to be solved in order to determine its probability
density! As a consequence, the chemical master equation cannot be treated with standard ODE
methods unless the problem is extremely small.
In this talk we present a dynamical low-rank approximation of the chemical master equation. The
underlying idea is to approximate the solution on a low-dimensional manifold of ansatz functions.
The approximation is propagated according to the Dirac-Frenkel-McLachlan variational principle
by projecting the derivative onto the tangent space of the manifold. Similar techniques are known
in the quantum chemistry community asmulticonfiguration time-dependent Hartree methodsand
have been applied with great success to the solution of Schrödinger equations with many degrees of
freedom. The performance of the method is demonstrated by applying it to a model problem with
bimodal solution density. Moreover, we discuss advantages, drawbacks and possible extensions of
the approach.

Explicit parallel two-step peer methods
Stefan Jebens, Rüdiger Weiner
(Martin-Luther-Universiẗat Halle-Wittenberg, Germany)

The construction of explicits-stage parallel two-step peer methods for the solution of non-stiff
initial value problems is considered. In each time steps solutions are computed as approximations
at the pointstmi := tm + hmci, i = 1, . . . , s. For autonomous scalar equations the methods can be
written in the compact form

Ym = BYm−1 + hmAF (Ym−1).

In every time step thes evaluations of the right-hand side can be computed in parallel. We consider
the construction of methods with optimal zero stability andorder p ≥ s. Criterions for good
methods are large stability regions and small error constants. Corresponding parameter sets have
been obtained using the differential evolution genetic algorithm.
A numerical comparison between peer methods withs = 6 stages and orderp = 6 andp = 7 in a
sequential implementation and ode45 in MATLAB shows the efficiency of the peer methods.
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Numerical coupling of electric circuits and semiconductordevices
Ansgar Jüngel, Markus Brunk
(Universiẗat Mainz, Germany)

Numerical simulations of highly integrated electric circuits are necessary in order to replace costly
experiments and to fulfill the demands due to the technological progress in microelectronics. The
high-density circuits show parasitic (for instance, thermal) effects which are usually modeled by
equivalent network equations. However, this strategy becomes questionable in modern circuits
and the charge transport and thermal effects in the devices need to be described by more precise
models. Thermal effects in semiconductor devices can be efficiently modeled on a macroscopic
level by energy-transport equations. These equations specify the electron density, the electric
potential, and the electron temperature in the device. Therefore, improved models are obtained by
coupling the circuit equations and the device models.
In this talk, the numerical coupling of electric circuits (modeled by standard equations from Kirch-
hoff’s laws) and semiconductor devices (modeled by 1-D energy-transport equations) is presented.
Together with the circuit equations, the coupled system becomes a system of partial-differential-
algebraic equations which are discretized in time by a BDF2 method. The space discretization
is performed by an exponentially fitted mixed finite-elementmethod. Numerical examples of a
high-frequency bipolar diode and a rectifier circuit consisting of four diodes show the impact of
the carrier heating on the semiconductor current.

Deterministic particle methods for high dimensional Fokker-Planck equations
Michael Junk
(Universiẗat Konstanz, Germany)

In the talk, questions are discussed which arise in the construction of Quasi-Monte-Carlo (QMC)
methods for high dimensional Fokker-Planck equations. An example which illustrates the need of
such methods appears in connection with the bead-spring chain representation of polymer mole-
cules, a classical model used in the study of dynamics of polymeric liquids. The bead-spring chain
typically consists of a large number of beads (e.g. 20) and thus the state spaceV of its configu-
ration, which is essentially the relative position of all the constituent beads, turns out to be high
dimensional (for example, dimension 57 in the case of 20 beads). The distribution function gover-
ning the configuration of a bead-spring chain undergoing shear flow is a Fokker-Planck equation
onV . Classically, Monte-Carlo (MC) methods are used to solve such high dimensional problems.
They do not suffer from the curse of dimension but the convergence order is quite low. In order to
avoid this disadvantage of MC algorithms it is tempting to consider deterministic QMC algorithms
instead because, for a certain class of plain integration problems, they are known to be superior to
the MC approach. It turns out, however, that the mutual independence of pseudo random numbers
plays a decisive role in MC methods for the solutions of partial differential equations with diffusive
terms. Since QMC methods are based on quasi random numbers which are typically highly corre-
lated, a direct substitution of pseudo random numbers with quasi random numbers does not work
as in the case of integration problems. Instead, suitable product measures have to be constructed
which eventually reduces the efficiency of the QMC approach.
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Adaption of Partitioned Integration Strategies for the Simulation of Mechatronic Systems
Daniel Kanth
(Bosch Rexroth AG, Department of Simulation Technology, Germany)

The simulation of mechatronic systems leads to a set of differential or differential-algebraic equa-
tions with heterogeneous structure. Due to large differences in eigenvalues these systems are often
stiff. Using a single integrator for the numerical time integration of stiff systems the step size has to
be reduced radically to meet accuracy requirements. As an alternative approach the system can be
divided into so called fast and slow subsystems. For each subsystem a specialized time integration
methods is used. This approach is calledpartitioned integration.
This paper describes the concept of partitioned integration and emphasizes the advantages of this
approach compared to non-partitioned integration. For that purpose two characteristic parameters
are derived which represent stiffness and coupling of the system. As a first step so calledelemen-
tary systemsare introduced, which represent the smallest decomposableunits of a system. If a
system has fastandslow elementary systems it is said to be stiff. The speed of anelementary sys-
tem is described by the product of a predicted step sizehpred and the norm of the Jacobian matrix.
Additionally the numerical effort for the time integrationfor each elementary system is calculated
with 1

hpred
. The coupling of elementary systems is determined by the sensitivity of states. Hence

all elementary systems are successively perturbed and the resulting effects in states are measured,
after an explicit euler step withhpred was performed. The sensitivity leads to an estimation of the
expectable coupling step sizeH. The expectable numerical effort for automatic coupling step size
control and the exchange of coupling data can be estimated withH. The expectable numerical ef-
fort of time integration and coupling data exchange leads tothe determination whether partitioned
integration is superior to non-partitioned integration ornot.
By estimating the total numerical effort it is not only possible to determine one or more suitable
integration methods but also to determine an optimal granularity for the time integration. Further-
more it is described how efficiency can be improved by using anautomatic control of the coupling
step size. The functionality is proved by numerical resultsof a mechatronic system simulation.

Numerical solution of stiff ODEs modelling chemical kinetics
Oleksiy Klymenko, I.B. Svir
(Kharkov National University of Radioelectronics, Ukraine)

Homogeneous chemical processes are described by systems ofordinary differential equations
which are often stiff due to greatly differing rates of individual reactions. Special care should be
taken during the numerical solution of such systems becauseof their nonlinearity and the require-
ment of positivity of the solution. The violation of the latter even within the prescribed tolerance in
many cases leads to divergence of the numerical solution. Inthis work we solve stiff ODE systems
describing complex chemical processes using two novel numerical methods the Almost Runge-
Kutta method (Butcher J.C., Rattenbury N. Almost Runge-Kutta methods for stiff problems. Appl.
Num. Math. 53 (2004)165-181) and the method by Aluffi-Pentini and co-authors (Aluffi-Pentini
Ñ., De Fonzo V., Parisi V. A novel algorithm for the numericalintegration of system of ordinary
differential equations arising in chemical problems. J. Math. Chem. 33 (2003) 1-15) based on the
exact solution of linearised ODEs. The performance and stability properties of the two methods
are compared.
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Implementation of Rosenbrock methods for compressible atmospheric models
Oswald Knoth
(Institute for Tropospspheric Research, Germany)

A new dynamical core for compressible atmospheric models isintroduced and evaluated with a
suite of standard test cases. The equations are discretizedin space in a cartesian or longitudinal-
latitudinal grid with height as the z-coordinate. Orography and other obstacles are incorporated
by the cut cell approach. In time the spatially discretized equations are integrated by Rosenbrock
methods with special chosen approximate Jacobian matrices. This type of approximation allows
to split the solution of the linear system in two separate ones, The first linear system is of the
advection-diffusion type and the second one is a positive definite Helmholtz system. Both systems
are solved by special iterative methods of conjugate gradient type with suitable preconditioning.
Rosenbrock methods are linearly implicit time integration methods and fall in the class of the
different proposed semi implicit methods found in the literature. Therefore the time step is not
restricted by sound and gravity waves. The numerical methodis parallelized by nonoverlapping
domain decomposition and allows different spatial resolution in different domains. Test cases
include warm and cold air bubbles, flow over hills of Agnesi type and flow around buildings.

An Integrated Design Procedure for Design of Smart Structures
Alexander A. Kolpakov
(The Novosibirsk State University, Russia)

In [1] the problem of integrated design of ”smart” structures was formulated and investigated for
the simple system described by ordinary differential equation. The recent analysis of the problem
leads to some conclusions of general value on the structure of the ”intelligence” [2, 3].
In the present paper, in addition to the results [1-3], new problem of design of smart frameworks
(the system described by a system of algebraic equations) ispresented.

References
1. A.A Kolpakov (2003) Analysis and design problem for ”smart” structures.10th Seminar NUM-
DIFF. Programme and AbstractsP30.
2. A.A Kolpakov and A.G.Kolpakov (2006) Design of smart beam- an integrated design procedure
Structural and Multidisciplinary Optimization. V.31, N13.
3. A.A. Kolpakov On mathematical modeling of “intelligence”. 5th World Congress of Biomecha-
nics, 2006, Munich, Germany (accepted)

The Network Models and Asymptotic of Capacity of a System of Closely-Placed Bodies
Alexander G. Kolpakov
(NGASU, Russia)

In [1, 2] it was demonstrated that boundary value problem in adomain filled with perfectly con-
ducting disks can be approximated with a network model (a system of Kirchhoff type equations).
The technique presented in [1, 2] can be used in 2-D case and for circular disks only.
In the paper a newly elaborated technique [3] of network approximation for boundary value pro-
blem in a domain filled with perfectly conducting subdomainsis presented. It relates the network
approximation to capacity of the perfectly conducting subdomains and can be used to analyze
problems of arbitrary dimension (the problem demonstrates2D-3D dimension sensetivity) and for
subdomains of arbitrary shape.
The mathematical results are applied to analysis of transport properties of dense-packed high-
contrast composites [5].
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Linear Multistep methods for quasi-singular perturbed probl ems
Felix Kramer
(Vienna University of Technology, Austria)

Stiff behavior occurs in a variety of ODE systems relevant inapplications. The notion of stiffness
is a phenomenological one, and a stability and error analysis of numerical methods has been based
either on simple models or particular problem structures. In particular, stiff initial value problems
in standard singular perturbation form are well understood. However, problems of this type exhibit
a very simple phase space geometry, namely the stiff eigendirections also behavestiff in another
sense, i.e., they are almost parallel. This motivates us to consider a more general nonlinear class of
stiff ODE systems depending on a small parameter. In particular, we investigate the convergence
properties of BDF methods applied to problems of this type, and linear multistep schemes will
further be investigated.

Finite Pointset Method (FPM): Meshfree Flow Solver in Continuum Mechanics
Jörg Kuhnert
(Fraunhofer Institut Techno- und Wirtschaftsmathematik,Germany)

FPM is a young CFD tool, developed in the Fraunhofer Institutefor Industrial Mathematics, Kai-
serslautern. It is a meshfree approach, mainly designed to overcome several drawbacks of classical
CFD methods. FPM evolved originally from classical SPH, however it developed towards a gene-
ral finite difference scheme operating on non-structured point clouds. It is a Lagrangian idea, i.e.
the point cloud moves with local fluid velocity. Each point carries relevant information and has to
be integrated in time.
We model the incompressible Navier-Stokes equations. Herewe employ Chorin’s projection idea
in order to maintain the incompressible character of the flow. An extension of this idea even leads
to more freedom, such that compressible flows can be computedas well. The integration method is
implicit in time. That relaxes the CFL-condition (i.e. upperbound for the time step size), however
it requires the construction and solution of big, sparse linear systems of equations.
The biggest advantage of FPM is its easy handling of free surfaces and multiphase flows. No
additional algorithms have to be employed in order to model free surfaces, as the point cloud itself
describes the topology of the free boundaries. The points belonging to a free surface or an interface
have to be detected and maintained at each time step.
Another advantage of FPM is its easy handling of flow problemswith moving boundaries and
complicated geometries. The point cloud perfectly organizes itself through the point movement.
FPM has successfully been employed in various industrial projects, most recently for applicati-
ons in glass industry. Here, stirring, floating, shrinking and rolling processes are designed and
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optimized using FPM. In car industry, FPM is applied for simulation of tank filling and sloshing
processes. The most recent idea is to use FPM for cutting processes. Here, of course, the modeling
has to be extended to visco-plastic material behavior.

Criticism of Asymptotic Global Error Expansion with a New Extra polation Theory
Gennady Kulikov
(University of the Witwatersrand, Johannesburg, South Africa)

In this paper we discuss existence of the asymptotic global error expansion for numerical solutions
obtained from general one-step methods applied to ordinarydifferential equations. The asymptotic
global error expansion was discovered independently by Henrici, Gragg and Stetter in 1962, 1964
and 1965, respectively. It is an important theoretical background for extrapolation methods. We
draw attention to some flaws in that theory and show that such an expansion is likely to fail to work
in practice. Therefore we give another substantiation for extrapolation methods. The Richardson
extrapolation technique is a key means to explain how extrapolation methods perform. Additio-
nally, we prove that the Aitken-Neville algorithm works forany one-step method of an arbitrary
order s under suitable smoothness.

Tractability Index = Strangeness Index +1
René Lamour, Roswitha M̈arz
(Humboldt-University of Berlin, Germany)

Once upon a time scientists from various fields tried to solveequations whose essential part con-
sisted of an ODE. There were only a few additional algebraic constraints that would not perturb
the power and accuracy of the known robust numerical ODE solution methods. That was the hope
- but the hope was dashed. This happened in the late sixties ofthe last century.
With the observed problems like singularities, drift off, up to divergence every research group star-
ted to discover the reasons for such a behavior. They found that, in contrast to classical ODEs,
we have to differentiate parts of the right-hand side of sucha system ofdifferential plusalgebraic
equations (DAE) to compute a solution. The quantity of how often you have to differentiate was
called the index and it describes the difficulty to solve a DAE.
Every scientist has naturally used her/his scientific background in her/his investigations and, the-
refore, we have various schools and theories about DAEs. We have the geometric, perturbation,
structural, differentiation, strangeness, tractabilitybut also the classical Kronecker index.
We have to compare these different concepts. The easiest oneshould be the transformation of
the (linear) DAE using the different concepts into a canonical form, but these canonical forms are
different.
We will focus on a comparison of the tractability and strangeness index for regular DAEs.

The solution of singular Schr̈odinger problems using a piecewise perturbation method
Veerle Ledoux, M. Van Daele and G. Vanden Berghe
(Ghent University, Belgium)

The piecewise perturbation methods (or PPM in short) were specially devised and shown to be
very efficient for the solution of regular Schrödinger problems

y′′(x) = (V (x) − E)y(x) (1)

defined on a finite integration intervalx ∈ [a, b]. However many practical problems are defined
on an infinite integration interval, i.e.a = −∞ or b = +∞. We discuss an improved truncation
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algorithm based on the WKB-approximation which automatically selects good truncation points
for a certainE-value. These truncation points are chosen large enough such that the solution in this
points may be assumed to be zero. However, for the important class of potentials which behave
like a Coulomb potential in the asymptotic region, the truncation algorithm can be improved taking
into account the asymptotic form of the Coulomb equation. More precise (truncated) boundary
conditions can then be constructed and this allows us to takeeven smaller cutoff values.
For these Coulomb-like problems another specific problem occurs: the potential is singular near
the origin. To deal with this singularity a specially tuned perturbation algorithm is used in a short
interval around the origin.

Fast Runge-Kutta approximation of inhomogeneous parabolic equations
Mar ı́a López-Ferńandez, Christian Lubich, Ćesar Palencia, and Achim Schädle
(University of Valladolid, Spain)

The result afterN steps of an implicit Runge-Kutta time discretization of an inhomogeneous linear
parabolic differential equation is computed, up to accuracy ε, by solving only

O
(

logN log
1

ε

)

linear systems of equations. The algorithm is based on a special discretization of the Cauchy
integral representation of the Runge-Kutta approximation.We derive, analyse, and numerically
illustrate this fast algorithm.

Dynamical low-rank approximation
Christian Lubich , O. Koch and A. Nonnenmacher
(Univ. Tübingen, Germany)

For the low rank approximation of time-dependent data matrices and of solutions to matrix diffe-
rential equations, an increment-based computational approach is proposed and analyzed. In this
method, the derivative is projected onto the tangent space of the manifold of rank-r matrices at the
current approximation. With an appropriate decompositionof rank-r matrices and their tangent
matrices, this yields nonlinear differential equations that are well-suited for numerical integration.
The error analysis compares the result with the pointwise best approximation in the Frobenius
norm. It is shown that the approach gives locally quasi-optimal low rank approximations. Further
error bounds show the robustness of the approach with respect to the choice of the approximation
rank. Numerical experiments with moving images, time-dependent term-document matrices and
reaction-diffusion equations illustrate the method and the theoretical results.

Solving Partial Differential-Algebraic Equations in Structural Mechanics: Applications and
Enhanced Treatment by Adaptive Mesh Refinement
Christoph Lunk , Bernd Simeon
(Technical University of Munich, Germany)

Computational mechanics and its various applications have experienced a significant development
over the last decade. From the numerical analysis point of view, we deal with physical laws of
subsystems, e.g. deformable bodies, described by Partial Differential Equations (PDE), which are
coupled by physical constraints. Their discretizations and the treatment of constraints are one of
the key issues in this problem class. In particular the coupling of time-dependent problems leads
to systems of Partial Differential-Algebraic Equations (PDAEs).
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In my talk I present a time integrator for this problem class,which combines the plausible scheme
of the RATTLE algorithm with the benefit of variable numericaldissipation by the Generalized-α
methods. Some key ideas on the convergence proof will be given. For the discretization of the
time-depending PDE´s and their algebraic constraints, this scheme is applied to the method of
lines and its reversed counterpart. The latter allows us to adapt the spacial mesh at each time
integration step, where the step size is also variable. The challenge is the dynamic behavior of
entries in the derived saddle point problems. I discuss someaspects on constraint formulations
and projection techniques due to the sensitive influence of perturbation.

At the end I give some examples of systems of rigid and deformable bodies (flexible multibody
systems). The simulation of pantograph with catenary dynamics demonstrates the potential of our
approach. An outlook on further investigations closes the presentation.

The parametrization method for numerical solution of singular differential equations
I.V. Lutoshkin , V.K. Gorbunov
(Ulyanovsk state university, Russia)

The problem to be solved numerically is the initial one for animplicit ordinary differential equa-
tion F (ẋ, x) = 0, 0 ≤ t ≤ T, x(0) = x0, wherex ∈ Rn andF : R2n → Rn, smooth
transformation, in the case of arbitrary degeneracy of the Jacobi matrix∂F (ẋ(t), x(t))/∂ẋ on the
solutionx(t). The important particular case is the structured system of DAEs

ẋ(t) = f(x(t), u(t)), g(x(t), u(t)) = 0,

with conditionsx(0) = x0, u(0)) = u0.
The PM is based on the minimization of discrepancy of appropriate differential system and appro-
ximation of ”control function”u(t) (in the first caseu(t) = ẋ(t)) by splines with moving knots.
The first and second derivatives of the discrepancy functional on the spline’s parameters can be
effectively calculated with help of variational techniques and adjoint variables. The corresponding
experience is presented in [1, 2]. Here we present also a simpler techniques for direct approxima-
tion of all components of the solution. Comparative analytical and numerical analysis of different
variants of the PM will be presented.
1. V.K. Gorbunov and I.V. Lutoshkin Development and experience of applying the parametrization
method in degenerate problems of dynamical optimization, in Izv. RAN: Teor. Syst. Upravl. 2004.
No.5. P. 67-84.
2. V.K. Gorbunov and I.V. Lutoshkin The parametrization method in optimal control problems and
differential-algebraic equations, in J. Comput. Appl. Math. (Elsevier). 2006. Vol.185. P.377-390.

Which ETD method?
Paul Matthews, Hala Ashi
(University of Nottingham, UK)

Exponential time differencing (ETD) methods were originally proposed by Certaine for nonlinear
systems with a stiff linear term, and have been re-invented many times since. They generally
perform better than the more well-known integrating factormethods (which have larger error con-
stants) and linearly implicit methods (which do not handle the linear term correctly). I will discuss
the circumstances under which this generalisation holds. There are many different types of ETD
method, and this talk will address their merits in terms of accuracy, stability and ease of use.

42



Convergence analysis of thin-plate spline interpolation
Jens Markus Melenk, Armin Iske and Maike Loehndorf
(TU Wien, Austria)

Radial basis functions provide a versatile tool for scattered data interpolation. One of the basic
questions is the interpolation problem: GivenN data pointxi ∈ R

d, i = 1, . . . , N , with correspon-
ding valuesfi, find the functionIf of the form

If(x) =
N

∑

i=1

ciφ(|x− xi|) + π(x)

such thatIf(xi) = fi for i = 1, . . . , N . One possible choice of the functionφ is that of polyhar-
monic splines, i.e., the functionx 7→ φ(|x|) is the fundamental solution of the iterated Laplacian
∆m. The functionπ is a polynomial of degreem − 1. In the cased = 2 = m, the function
φ(r) = r2 log r is called the thin-plate spline.
Existence, uniqueness, and optimal rates of convergence for quasi-uniformly distributed data points
xi were established in fundamental papers by Duchon and Meinguet. Convergence here means that
the interpolation datafi = f(xi) originate from a functionf ∈ Hm(Ω) and the errorf − If is
considered. We extend this classical theory to functionsf ∈ Hk(Ω) with k > m. Specifically, we
show that optimal convergence rates can be obtained forf ∈ Hk(Ω) in the rangek ∈ [m,m+1/2).
Boundary effects limit the achievable convergence in the regimek > m+ 1/2; however, we show
how further improvements in the convergence rate can be obtained by condensing data pointsxi

near the boundary. Numerical examples corroborate the theoretical assertions.

Computing Eigenfunctions of Singular Points in Nonlinear Parametrized Two-Point BVPs
Thomas Milde
(Friedrich-Schiller-Universiẗat Jena, Germany)

The iterative computation of singular points in parametrized nonlinear BVPs by so-called extended
systems requires good starting values for the singular point itself and the accociated eigenfunction.
Using path-following techniques such starting values for the singular points are generated auto-
matically. However, path-following doesn’t provide approximations for the eigenfunctions. We
propose a new modification of this standard technique delivering such starting values. It is based
on an extended system wich can be used for nonsingular as wellas singular points.

Adaptivity in mechanical integrators
Klas Modin , Claus F̈uhrer and Gustaf S̈oderlind
(SKF Engineering Research Centre and Lund University, Sweden)

Mechanical integrators are numerical integration methodsspecifically designed for evolution equa-
tions originating from mechanical systems. Typically, thediscrete flow introduced by a mechanical
integrator share structural properties with the corresponding exact continuous flow, which makes
its long time behavior superior to conventional numerical integrators. Examples of structure preser-
ving properties are: reversibility; conservation of momentum maps; conservation of the symplectic
form; conservation of energy. A result by Ge and Marsden (1988) asserts that if a symplectic dis-
crete flow exactly conserves energy and momemtum, then it gives in fact the exact solution. Hence,
two main branches of mechanical integrators have evolved: symplectic–momentum and energy–
momentum conserving. Nevertheless it has been shown, e.g. by Hairer, Lubich and Wanner (2002),
that symplectic–momentum methods acquire near conservation of first integrals such as energy.
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For evolution equations with alternating dynamics it is classically more efficient to use adaptive
numerical integrators with, e.g., varying time-step and/or order of accuracy. The design of adaptive
mechanical integrators is non-trivial, since conventional adaptive techniques tend to destroy inher-
ent structural properties. In particular, standard adaptive time-step selection in conjunction with
symplectic–momentum methods do not maintain near conservation of first integrals. During the
last decade other adaptive time-step techniques, based on dynamic time transformations, have been
developed. These techniques allow the construction of variable time-step mechanical integrators.
In this talk further developments and generalizations of adaptive mechanical integrators are pre-
sented. More specifically, we show how the framework of variational integrators originating from
discrete mechanics – a discrete counterpart to Lagrangian mechanics – can be extended to in-
clude integrators with general adaptive objectives. A key point of ours is to analyze adaptivity
from a control theoretic point of view, where the input variables of the control system is given by
discretization parameters, e.g. the time-step length, andthe output variables by local state space
measurements, e.g. the local integration error. The art of adaptivity then amounts to the design of
suitable feedback laws.

Fractional step Runge-Kutta-Nyström methods for evolution problems of second-order in
time
Maria Jesús Moreta, Blanca Bujanda, Juan Carlos Jorge
(Universidad Ṕublica de Navarra, Spain)

As it is well-known, because of their computational advantages, Fractional Step methods are wi-
dely used in practice for solving evolutionary problems of first order in time. The application of
these methods has been extended to classical second order intime problems like the wave equation.
Following the main advantages of these methods, we have developed a new class of methods, cal-
led Fractional Step Runge-Kutta-Nyström methods (FSRKN), to solve numerically second-order
in time evolutionary problems. As in the case of using Fractional Step Runge-Kutta, the main
goal consists of reducing the computational cost of classical implicit methods for solving multi-
dimensional problems of this type. In order to get this, we must split firstly the space differential
operator as a sum of simpler operators in a certain sense. After doing this, we integrate in time
using a FSRKN method subordinated to such splitting. In this way, only a piece of the splitting
acts implicitly at each fractional step.
In this talk the main properties of these methods are shown, as well as the construction of a family
of third-order unconditionally stable methods of this class. Finally, we present some numerical
results confirming their advantages.

On Multivariate Chebyshev Polynomials; from Group Theory to Numerical Analysis
Hans Z. Munthe-Kaas
(University of Bergen, Norway)

Classical 1-D (univariate) Chebyshev polynomials are ubiquitous in numerical analysis with app-
lications ranging from approximation theory to spectral discretizations of PDEs, signal processing
and numerical linear algebra. Chebyshev polynomials have near-optimal approximation properties
and enjoy fast expansions via the FFT.
The need for extending the beautiful properties of 1-D Chebyshev polynomials to several dimen-
sions is usually accomplished by considering tensor products on separable (box-shaped) domains.
Box-shaped domains are unfortunately not well suited for patching together in domain decompo-
sition and spectral element discretizations of PDEs. Thereis a need for developing polynomial
approximation theory on triangles and higher dimensional tetrahedra.
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Multivariate families of Chebyshev polynomials can, however, also be constructed on certain non-
separable domains. By applying the theory of Kaleidoscopic mirror groups (or affine Weyl groups)
acting onRn, one obtains families of Chebyshev polynomials living on domains related to triangles
and tetrahedra. These were first considered by Koornwinder in 1974. There is a limited literature
on the properties of these non-separable multivariate Chebyshev polynomials. However, applica-
tions in numerical analysis seem to be absent, and these polynomials are almost unknown in the
numerical analysis community.
In this talk we will give an overview of the theory of multivariate Chebyshev polynomials and
show how these share the beautiful properties of their univariate cousins, such as near-optimal
Lebesgue constants for the interpolation error and the existence of fast transforms for expansions
and (pseudo)-spectral differentiation. The goal of the talk is to show that these yield powerful tools
that should be available in the toolbox of numerical analysis and scientific computing.
Finally, we will briefly mention some fast symmetry based exponential- and Lie group time inte-
grators obtained from triangle based spectral element discretizations of PDEs.

Numerical integration of the extended plasma fluid equations with SD3 Kurganov-Levy
Scheme
Richard Naidoo
(Durban Institute of Technology, South Africa)

The plasma two fluid equations were extended to include the energy equations. We then numeri-
cally integrate the new set of conservative equations by means of a recently modified third order
semi-discrete scheme for hyperbolic systems due to Kurganov and Levy [SIAM J.Sci.Comp. 22,
p1467, 2000]. We illustrate the formation of solitons and shock waves.

On the convergence of the Magnus series
Jitse Niesen, Per Christian Moan
(La Trobe University, Melbourne, Australia)

The solution of a linear nonautonomous differential equation can be given in terms of an infinite
series called theMagnus series. Specifically, the solution of the equationy′ = A(t) y can be
written asy(t) = exp(Ω(t)) y(0) where exp denotes the matrix exponential andΩ(t) is given as an
infinite series. The Magnus series can be used to design numerical methods for equations of this
form.
In this talk, we discuss the convergence of the infinite series forΩ(t). We mention the connection
between the convergence of the infinite series and the convergence of the numerical method. Our
main result is that the series converges if

∫ t

0
‖A(s)‖ dt < π. The constantπ is sharp.
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A collocation method for solving nonlinear differential equations via hybrid of rationalized
Haar functions
Yadollah Ordokhani , Bahman Arabzadeh
(Department of Mathematics,Alzahra University, Iran)

Hybrid of rationalized Haar functions are developed to approximate the solution of the nonlinear
differential equations.The properties of hybrid functions which are the combinations of block-
pulse functions and rationalized Haar functions are first presented. These properties together with
the Newton-Cotes nodes are then utilized to reduce the differential equations to the solution of
algebraic equations.The method is computationally attractive,and applications are demonstrated
through illustrative examples.

Recent developments in exponential integrators
Alexander Ostermann
(Universiẗat Innsbruck, Austria)

Exponential integrators were first proposed in the 1960s forthe numerical solution of stiff dif-
ferential equations. They later turned out to be efficient for problems where the solution of the
linearisation contains fast decaying or highly oscillatory components. In spite of the favourable
properties of exponential integrators, there are still few(if any) variable stepsize implementations
available in the community.
For higher-order explicit exponential Runge–Kutta methods, it turned out to be difficult to con-
struct reliable and efficient error estimates. Moreover, incontrast to classical time integrators,
exponential methods arenot invariantunder linearisation. This results in an error behaviour simi-
lar to classical W-methods. Therefore, we have to expect large errors whenever the linear part is
not well chosen.
In my talk, I will address these problems. Further, I will discuss alternative approaches for a
possible implementation.

On some conservation properties of symmetric methods applied to Hamiltonian systems
Brigida Pace, Felice Iavernaro, Donato Trigiante
(Dipartimento di Matematica, Università di Bari, ITALY)

The use of symmetric schemes has revealed interesting stability properties for the long time simu-
lation of conservative, and in particular Hamiltonian systems. Although in general these methods
fail to preserve the energy function and/or the symplecticity property proper of the continuous
(Hamiltonian) problem, in many interesting situations, they however display a behavior which is
qualitatively close to both symplectic and energy preserving methods. We use a new approach
based upon the definitions ofdiscrete line integralandstate dependent symplecticityto specify the
terms of such closeness.

A numerical solution of conjugate problem of forest fire initiation
Valeriy Perminov
(Belovo Branch of Kemerovo State University, Russia)

A mathematical model for the description of heat and mass transfer processes at crown forest fire
initiation and spread has been designed. Turbulent heat andmass transfer in the forest crown, as
well as heat and mass exchange between the near-ground layerof atmosphere and the forest canopy
are incorporated in a so-called conjugate formulation. Thelatter manages to take into consideration
the mutual effects of the forest canopy and the atmosphere during forest fires the most accurately.
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Based on the model of forest fires, the problems of crown forestfire initiation and spread are
studied with due consideration for the effect of a turbulentatmosphere and the actual structure of
the forest biogeocenosis. The boundary value problem was solved numerically using the method
of splitting according to physical processes. A discrete analog for the system of equations was
obtained by means of the control volume method. These results of research provide the foundation
for current mathematical forest fire theory, and will be outlined in detail in subsequent models of
this paper.

Sensitivity analysis of discontinuous multidisciplinarymodels
Andreas Pfeiffer
(German Aerospace Center (DLR) Oberpfaffenhofen, Germany)

Multidisciplinary modelling and simulation play an important role in design and analysis of me-
chatronic integrated systems. Within this subject the object-oriented modelling language Mode-
lica supports automatic model generation for efficient timesimulation of DAE-systems in complex
technical applications.
Detailed model-based investigations demand not only to compute the solution of model equations
but also sensitivites (derivatives) with respect to model parameters. A general numerical approach
relies on the simultaneous integration of the nominal system and the sensitivity differential equa-
tions. This approach can be extended to hybrid systems with discontinuities in right-hand sides
and states. Furthermore, problems will be addressed that solutions remain in crossing function
manifolds (Filippov solutions). For the investigated systems it will be discussed, if and under
which conditions the parameter sensitivities exist. The numerical computation of sensitivities by
automatically generated Modelica models with higher complexity will be introduced, too.
An important application of sensitivity computation is theidentification of unknown model para-
meters in physical systems by optimisiation algorithms. Fast local convergence of gradient based
algorithms (e.g. SQP) will only be possible if the gradient information is sufficiently accurate.
In general, finite differences (external differentiation)hardly reach this accuracy. The results of
SQP-optimisation in combination with sensitivity computation will be demonstrated by a complex
six-axis robot model.

Numerical treatment of integro-PDEs for Phytoplankton dynamics
Nguyet Nga Pham Thi, B. P. Sommeijer, J. Huisman
(CWI, The Netherlands)

Modelling the dynamics of phytoplankton is of great importance to many aspects of human in-
terest, since phytoplankton provides the basis of the food chain in lakes, seas and oceans. A
particularly interesting aspect is the ability of sinking phytoplankton species to take upCO2 from
the atmosphere, resulting in a downward export of carbon to the bottom of the ocean (the so-called
‘biological pump’). By this mechanism, several gigatons peryear of carbon dioxide are removed
from the atmosphere, thus making a significant contributionto the reduction of the greenhouse
problem on earth.
Phytoplankton requires light for photosynthesis. As a result, the production rate, which is deter-
mined by the local light intensity, decreases with depth, due to absorption. Furthermore, mortality
rates and transport by turbulent diffusion in a water column(mixing) play a role. Also, phyto-
plankton species often have a specific weight different fromthat of water, giving rise to vertical
transport in the form of sinking or buoyancy. Taking all these processes into account, leads to an
integro-partial differential equation of advection-diffusion-reaction type.
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Usually, light availability is the major factor limiting phytoplankton growth. In some regions,
however, phytoplankton growth is limited by the availability of nutrients, such as nitrogen, iron,
and phosphoros. We will consider a model in whichboth limiting factors, light and nutrient, are
taken into account. These two factors give rise to contrasting gradients since light is coming from
above, whereas nutrients are supplied at the sediment. As a result, the vertical distribution of
the phytoplankton population can be quite heterogeneous inthe sense that a large aggregation of
phytoplankton is formed at a subsurface depth, where both light and nutrient are just sufficiently
available to sustain a population. In a certain part of parameter space, it turns out that the biomass
(as a function of time) shows an oscillatory behaviour. So far, nutrient limitation of phytoplankton
is thought to lead to a stable equilibrium without oscillations.
The above aspect will be illustrated and the underlying algorithms in the numerical simulations
will be discussed.

Construction and implementation of peer methods
Helmut Podhaisky, Rüdiger Weiner
(University Halle, Germany)

General linear methods can have favorable properties, in particular the unique combination of

• A-stability,

• high stage order, and

• a diagonally implicit scheme

is possible. However, it seems to be difficult to construct methods which behave robustly enough
in a variable stepsize implementation to supersede Runge-Kutta and multistep methods in real
applications.
The idea behind a peer methods is to pass all stage valuesYmi ≈ y(tm + cih), i = 1, . . . , s from
step to step, leading to

Ym = hAf(Ym) +BYm−1

with a ‘diagonally implicit’ matrixA. The order conditions can easily be satisfied by interpolation
and perfect stability at infinity is also automatically guaranteed. The main difficulty is to use the
remaining degrees of freedom to find A-stable and ‘nice’ methods. We will discuss the construction
of peer methods and techniques of local error estimation fora variable order implementation.

Wavelet-based Adaptive Grids for Solving Multirate Partial Differential-Algebraic Equati-
ons
Roland Pulch, Stephanie Knorr
(Bergische Universiẗat Wuppertal, Germany)

In radio frequency (RF) applications, electric circuits produce oscillatory signals with largely diffe-
ring time scales. Thus a transient integration of the differential-algebraic equations (DAEs), which
describe the circuit, becomes inefficient. Alternatively,a multidimensional signal model yields a
system of multirate partial differential-algebraic equations (MPDAEs). A method of characteri-
stics is feasible to solve multiperiodic boundary value problems of the MPDAEs. This technique
enables an efficient numerical simulation, if a relatively coarse grid can be used in time domain.
In case of digital signal structures, steep gradients or discontinuities may arise near specific time
points. In this contribution, we present a technique based on wavelets to construct an adaptive grid
in time domain. Consequently, the method of characteristicsrequires a low number of grid points
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in comparison to uniform grids, which achieves the efficiency of the multidimensional approach.
Numerical simulations corresponding to benchmark circuits demonstrate the performance of this
adaptive construction and the resulting RF signals.

High Resolution Finite Volume Schemes for Solving Population Balance Models
Shamsul Qamar, Gerald Warnecke
(Institute for Analysis and Numerics, Otto-von-Guericke University, Magdeburg, Germany)

Physical modeling of particulate processes has been the subject of intense research over the last
half century. It is a fertile area for research and of great importance in a wide range of industries
from pharmaceuticals to minerals, food and petrochemicals. Various phenomena involving
particle processing are still unclear and a good knowledge of the mechanisms of size changes
which occur in particulate processes is useful in product development, waste minimization and
quality control.

The mathematical description of the change in particle identities during process such as granula-
tion, crystallization etc. is referred to us as population balance equations. The population balance
equation (PBE) is considered to be a statement of continuity and it track the change in particle
size distribution as particle are born, die, grow or leave the control volume. The entities in the
population density can be crystals, droplets, molecules, cells, and so on.

We focus on the numerical solution of multi-dimensional population balance equations by using
semidiscrete high resolution finite volume schemes. The finite volume schemes were originally
derived for compressible fluid dynamics. The schemes are derived for general purpose and hence
can be applied to any model of hyperbolic type. In this study we concentrate on the population
balance models for crystallizatin and aggregation processes. Several one and two-dimensional nu-
merical test problems are considered here. The numerical results are validated against the available
analytical solutions and experimental results of our collaborating research group. These numerical
simulations prove the versatility, generality and effectiveness of the finite volume schemes.

Numerical solution of a dynamic model for dual methanol reactor
Mohammad Reza Rahimpour
(Shiraz University, Iran)

The present work investigates numerical solution of a dual catalyst bed model for industrial me-
thanol synthesis. A system with two catalyst beds instead ofone single catalyst bed is developed
for methanol synthesis. In the first catalyst bed, the synthesis gas is partly converted to methanol in
a conventional water-cooled Lurgi type reactor. This bed operates at higher than normal operating
temperature and at high yield. In the second bed, the reaction heat is used to preheat the feed gas
to the first bed. The continuously reduced temperature in this bed provides increasing thermody-
namic equilibrium potential. In this bed, the reaction rateis much lower and, consequently, so is
the amount of the reaction heat. This feature results in milder temperature profiles in the second
bed because less heat is liberated compared to the first bed. In this way the catalysts are exposed
to less extreme temperatures and, catalyst deactivation via sintering is circumvented. This system
results in outstanding technical features due to the extremely favorable temperature profiles over
the catalyst beds. In this work, a one-dimensional quasi-steady plug flow model is used to analyze
and compare the performance of dual bed and conventional single bed reactors. The results of this
work show that the dual catalyst bed system can be operated with higher conversion and longer
catalyst life time.
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Efficient Stochastic Runge-Kutta Methods for the Weak Approximation of the Solution of
SDEs
Andreas Rößler, Kristian Debrabant
(TU Darmstadt, Germany)

Stochastic Runge-Kutta (SRK) methods up to order two for the weak approximation of both, Itô
and Stratonovich stochastic differential equations (SDEs), have been proposed in recent years.
However, if these SRK methods are applied to SDE systems then the number of stages depends
linearly on the dimension of the driving Wiener process. This is a significant drawback for the
application of such methods in many applications like mathematical finance. In the present talk, a
new class of second order SRK methods is presented which overcomes this drawback, i.e. where
the number of stages is independent of the dimension of the driving Wiener process. Order conditi-
ons for this new class of SRK methods are calculated by the colored rooted tree analysis and some
coefficients for explicit and implicit order two SRK methods are determined. The performance of
the new methods is confirmed by the results of some numerical examples.

A Simple Method for Solving PDEs on Surfaces using the Closest Point
Steven Ruuth, Barry Merriman
(Simon Fraser University, Canada)

Many applications require the solution of time dependent partial differential equations (PDEs) on
surfaces or more general manifolds. Methods for treating such problems include surface parame-
terization, methods on triangulated surfaces and implicitsurface techniques. In particular, implicit
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surfaces using level set representations have received recent attention due to their relative sim-
plicity. Level set based methods have several limitations,however. These include the inability
to naturally treat open surfaces or objects of codimension two or higher. Level set methods also
typically lead to a degradation in the order of accuracy whensolved on a banded grid.
This talk describes an approach based on the closest point representation of the surface which
eliminates these and other limitations. A noteworthy feature of the method is that it is remarkably
simple, requiring only minimal changes to the corresponding three-dimensional codes to treat the
evolution of partial differential equations on surfaces.

System of Linear Differential Equations and Differential-Algebraic Equations
Masoud Saravi, E. Babolian, R. England, M. Bromilow
(Department of Mathematics, Islamic Azad University-NoorBranch, Noor, Iran)

In this paper, first we introduce, briefly, pseudo-spectral method to solve linear ODEs and then, ex-
tend it to solve a system of linear ODEs and DAEs and compare this method with other using some
numerical examples. Furthermore, because of appropriate choice of Chebyshev-Gauss-Raudo
points we will show that this method can be used to solve a DAEswhenever some of coefficient
functions in constraint are not analytic by providing some examples.

Meshfree Explicit Local Radial Basis Function Collocation Method for Microscopic and Ma-
croscopic Phase Change Simulations
Bozidar Sarler
(Laboratory for Multiphase Processes, University of Nova Gorica, Slovenia)

This paper uses a simple version of the classical meshless radial basis function collocation (Kansa)
method for solution of the convective-diffusive solid-liquid phase change problems. The method
is structured on multiquadrics radial basis functions. Instead of global, the collocation is made
locally over a set of overlapping domains of influence and thetime-stepping is performed in an
explicit way. Only small system of linear equations with thedimension of the number of nodes
included in the domain of influence have to be solved for each node. The computational effort thus
grows roughly linearly with the number of the nodes. The applicability of the recently deduced
method is shown on several involved numerical test cases, including coupled fluid flow, heat and
mass transfer on the microscopic and macroscopic scale. Theautomatic adaptive redistribution,
adding/removing of the collocation nodes is shown on the example of dissolution of different
phases in multicomponent aluminium alloys.

A Multirate Time Stepping Strategy For Stiff ODEs
Valeriu Savcenco, W. Hundsdorfer, J.G. Verwer
(CWI, The Netherlands)

To solve ODE systems with different time scales which are localized over the components, multi-
rate time stepping is examined. We introduce a self-adjusting multirate time stepping strategy, in
which the step size for a particular component is determinedby its own local temporal variation,
instead of using a single step size for the whole system. We primarily consider implicit time step-
ping methods, suitable for stiff or mildly stiff ODEs. Numerical results with our multirate strategy
are presented for several test problems. Comparisons with the corresponding single-rate schemes
show that substantial gains in computational work and CPU times can be obtained.
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Fast and oblivous convolution
Achim Schädle, M. Lopez-Fernandez, Ch. Lubich
(Zuse-Institute Berlin, Germany)

A fast algorithm to evaluate convolution integrals is presented. The convolutionc(t) =
∫ t

0
k(t −

τ)g(τ)dτ is discretized by the convolution quadraturecn =
∑n

j=0 ωn−jgj. cn is then eva-
luated with precisionε for all n = 1, . . . , N with O(N log(N) log(ε−1)) operations requiring
O(log(N) log(ε−1)) only active memory. The algorithm requires the evaluation of the Laplace
transform of the convolution kernelk, which is assumed to be sectorial, and is based on the nume-
rical inversion of Laplace transforms using contour integrals.
In a simple numerical example the algorithm is used to solve asub-diffusion equation.
This talk is closely related to the one presented by M. Lopez-Fernandez.

Parameter optimization for explicit parallel peer two-step methods
Bernhard A. Schmitt, Rüdiger Weiner
(University of Marburg, Germany)

Peer two-step methods for time integration uses stages having identical stability and accuracy
properties. Explicit parallel peer methods have a very simple structure withs parallel function
evaluations followed by one large parallel matrix multiplication. We show that the stability po-
lynomial of a certain subclass with2s + 1 parameters has less degrees of freedom and depends
linearly on a set of onlys + 1 new parameters. By using flexible root locus bounds for the stabi-
lity polynomial we avoid eigenvalue computations and reduce parameter optimization to a linear
program which is solved exactly by the simplex method. The size and shape of the stability region
serve as constraints under which a certain long-term error constant is minimized. The result carries
over to a larger subclass of explicit peer methods where the dependence becomes semilinear with
the option to use linear programming as an inner solution method of a Monte-Carlo search. Rea-
listic parallel tests of some peer methods withs ≤ 8 stages using OpenMP are presented showing
nearly optimal speed-up for expensive problems like celestial multi-body systems.

Adaptive Multilevel Techniques for Meshfree Methods
Marc Alexander Schweitzer
(Institut für Numerische Simulation, Universität Bonn, Germany)

In this talk we present an adaptive multilevel solver for thepartition of unity method. Core ingre-
dients of our method are a subdomain error estimator to stearthe refinement of a particle cloud
and a multiplicative multilevel iteration. The results of our numerical experiments in two and three
space dimensions indicate that the estimator is efficient and reliable and that the overall solver is
of optimal complexity.

An Eulerian-Lagrangian Method for Coupled Parabolic-Hyperbolic Equations
Mohammed Seaid
(Universiẗat Kaiserslautern /AG Technomathematik, Germany)

Coupled parabolic-hyperbolic equations appear in mathematical modelling of many practical app-
lications in physics and engineering. In this contribution, special attention is given to problems in
radiation hydrodynamics. The numerical solution of such problems is not trivial due to the diffe-
rent nature of the equation governing the hydrodynamics andradiation and also due to the different
time scales. It is well known that fluids flow with speed of sound while radiative signals propagate
with the speed of light. Using the same discretization for both dynamics results in an inefficient
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solver since the required time steps should be bounded by thefastest speed. Our attempt is to con-
struct numerical time integration schemes for coupled parabolic-hyperbolic equations, which rely
on the idea of Eulerian-Lagrangian methods that are stable and second order in time. The methods
consist of integrating the hyperbolic equations in the system along the characteristics. This moves
many difficulties related to the treatment of convection terms and allows for large time steps in
the computational process. The parabolic equations in the system are solved using Eulerian me-
thod. The strong relationship between the nature of coupledparabolic-hyperbolic equations and
the choice of the most appropriate time marching with large stability region is also highlighted for
some of these results.
Numerical results for a class of coupled parabolic-hyperbolic equations demonstrate the ability of
our algorithms to better maintain the shape of the solution in the presence of shocks and disconti-
nuities. The robustness, accuracy and efficiency of these methods are illustrated and compared in
several benchmark problems from radiation hydrodynamics.

Numerical analysis of a coupled model for the simulation of electrical circuits
Monica Selva Soto
(University of Cologne, Germany)

The goal of this talk is to present a model for the simulation of electrical circuits that consists of a
coupled system of differential algebraic and partial differential equations. The partial differential
equations describe behaviour of the semiconductor devicesin the circuit. For the numerical solu-
tion of this model we discretize in space the partial differential equations in the system and solve
the resulting differential algebraic equation. During thetalk a brief description of the model will
be given and some of its properties will be presented. It is also our purpose to discuss some of our
simulation results and compare them with those obtained using a different approach, namely the
coupling of two simulators.

Some aspects of collocation and least squares method for nonlinear hyperbolic equations
Leonid Semin, Denis Kharenko
(Institute of Theoretical and Applied Mechanics SB RAS, Russia)

In the present study we propose a numerical method for solving nonlinear hyperbolic equation
which is based on simultaneous usage of collocation method and least-squares technique. Nu-
merical solution in each grid cell is searched for as linear combination of basic functions. The
latter were taken belonging to the space of polynomials. In order to find coefficients of solution
expansion by basic functions we use collocation method, i.e. we require boundary conditions, mat-
ching conditions between cells, differential equation to be satisfied in specified points. We took
the number of these equations greater than number of unknowns. We found a solution of this over-
determined system by least-squares method. The method proposed was applied to problems where
the solution has discontinuous derivatives. We developed the variants of the method with basic
functions belonging to the space of polynomials of second and third orders, variant for the first
order system derived from initial second order equation. The variants were compared numerically.
A method of accelerating the convergence of iterations was developed which also gives oscillations
damping at discontinuities. This study was supported by RFBR grant Nr. 06-01-00080-a.
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Sensitivity Analysis for ODE and DAE systems
Radu Serban
(Lawrence Livermore National Laboratory, USA)

Sensitivity Analysis (SA) is the study of how the variation in the output of a model (numerical or
otherwise) can be apportioned, qualitatively or quantitatively, to different sources of variation. For
dynamical systems the most efficient and accurate SA approach is the so-called continuous sen-
sitivity equation which implies generating and solving additional systems, the solutions of which
provide either the sensitivities of the states (forward SA)or of some functional of the states (adjoint
SA) with respect to model parameters.
We present some of our previous and current work on methods (with emphasis on adjoint SA),
implementation (in SUNDIALS, Suite of Nonlinear and Differential/Algebraic Equation Solvers),
and applications. We present applications of SA to the assessment of reduced-order models under
perturbations and to the approximation of response surfaces for effective sampling for uncertainty
quantification.

BS Methods and their Associated Spline
Alessandra Sestini, Francesca Mazzia and Donato Trigiante
(University of Firenze, Italy)

BS methods define a class of Boundary Value Methods for solving general Boundary Value Pro-
blems numerically. Their distinguishing property is that the continuous extension of the numerical
solution generated by thek–step BS method can be computed with negligible additional compu-
tational cost using a(k + 1)–degree spline havingCk smoothness and sharing with it the approxi-
mation order. Both their stability features and an efficient implementation in the setting of general
nonuniform meshes have been studied in [1] and [2], respectively. Here we introduce an efficient
algorithm devised for the computation of the spline coefficients using the B-spline basis. The
continuous extension is useful especially when we deal withnonlinear problems which are solved
using a quasi–linearization technique [3]. The hybrid meshselection strategy introduced in [4] is
used in combination with these methods in all the numerical experiments.

References

[1] F. Mazzia, A. Sestini and D. Trigiante (2006), B-spline Multistep Methods and their Continuous Exten-
sions, Siam J. of Numerical Analysis, in press.

[2] F. Mazzia, A. Sestini and D. Trigiante (2006), BS Linear Multistep Methods on Non–uniform Meshes,
JNAIAM, in press.
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Solving elliptic problems with singularities using finite difference schemes
Vasily Shapeev, Alexander Shapeev
(Institute of Theoretical and Applied Mechanics, Novosibirsk, Russia)

Boundary-value problems with singularities are solved numerically using high-order finite diffe-
rence schemes (the sixth- and tenth-order schemes). Two problems were considered. In the first
problem

{

∆u(x, y) = 1, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

u|Γ = 0

for the Poisson equation the singularity consists in the discontinuity of solution derivatives at the
corner point of the rectangular domain. In the second problem







β

(

∂2u

∂x2
+
∂2u

∂y2

)

+ (x− a)
∂u

∂x
+ (y − b)

∂u

∂y
= 0, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

u|Γ = v(x, y)

with the small parameter (β = 10−4) at the highest derivative the singularity consists in a thin inner
boundary layer. The solution behaviour and convergence of the numerical solution on a sequence
of grids has been analysed with the help of exact solutions. Naturally, the order of convergence
was less than the approximation order. However, in both cases the convergence order of high-
order method was higher than the convergence order of low-order methods. This allows to gain a
good accuracy with a small number of grid nodes. The derivation of the finite difference schemes
and the analysis of the solutions were carried out with the help of the computer algebra system
Mathematica. (A.V. Shapeev, V.P. Shapeev. Difference schemes of increased order of accuracy
for solving elliptical equations in domain with curvilinear boundary. Journal of Computational
Mathematics and Mathematical Physics, 2000, 40 (2), p. 223-232.).

One Family of Symmetric One-Step Methods of Order Four
Sergey Shindin, G. Yu. Kulikov
(University of the Witwatersrand, Johannesburg, South Africa, South Africa)

In the talk we present a new family of one-step methods which are sufficiently accurate. These
methods are of the Runge-Kutta type. However, they have only explicit internal stages that leads
to cheap practical implementation. On the other hand, the new methods are of classical order 4
and stage order 2 or 3. They areA-stable symmetric and conjugate to a symplectic method at
least up to order 6. All of these mean that they are applicableto solve both nonstiff and stiff
ordinary differential equations (including reversible and Hamiltonian problems) and possess all
the necessary practical features making them quite attractive.

Dynamic Contact and Differential-Algebraic Equations
Bernd Simeon
(TU München, Zentrum Mathematik, Germany)

Dynamic frictionless contact is typically modelled by a time-dependent variational inequality. Pen-
alty techniques introduce stiff springs at the contact interface and represent a regularization tech-
nique. On the other hand, the Lagrange multiplier approach enforces the impenetrability cons-
traint by unilateral constraint equations. Not surprisingly, this problem class is closely related
to the differential-algebraic equations arising in multibody dynamics. Due to the continuum me-
chanics model, however, we have to deal here with a unilaterally constrained partial-differential-
algebraic equation. Several questions arise in this context: What is the connection between the
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LBB-condition and the index? What are the requirements for a good time integration method?
Is regularization as it is implemented in commercial simulation codes a reliable and efficient ap-
proach? The talk will address these questions and discuss some second order integrators, including
explicit schemes based on the central difference method andimplicit ones based on the midpoint
rule. Transition conditions in impact situations will alsobe covered.

Exponential integrators and spectral element methods
Bård Skaflestad, Anne Kværnø
(NTNU, Norway)

The ‘OIFS’ framework of Maday and co-workers (1990) uses ideas similar to exponential inte-
grators in the construction of splitting methods for the incompressible Navier–Stokes equations.
However, a possible problem with the resulting schemes is analgebraic splitting error stemming
from the diffusion operator. Moreover, this error term doesnot vanish in the case of steady state
flows. On the other hand it is not—to the best of our knowledge—known to what extent the split-
ting error degrades the numerical solution.
Employing exponential integrators for the temporal discretisation, we can eliminate this particular
error term. Consequently, we are able to gather empirical evidence on the degradation mentioned
above. This talk will show work in progress in this direction.

Adaptive Grids
Gustaf Söderlind
(Numerical Analysis, Lund University, Sweden)

In discretization methods for differential equations there is a trade-off between accuracy and com-
putational effort. Efficiency (the terms of trade) can be improved by using adaptive methods; grid
points are not chosen uniformly but are put where they reallymatter to accuracy. Their number
is kept as small as possible subject to keeping the discretization error below a prescribed tole-
rance. Differential equation solvers use grid adaption andsometimes variable order to increase
computational efficiency.
Although technically different, there are similar considerations in initial value ODE solvers, DAE
solvers and two-point boundary value problem solvers. Special problems, such as reversible pro-
blems and energy conserving systems, may have highly specific requirements.
Grid and order control algorithms have often been heuristic, but today these algorithms can be
designed and analyzed using mathematical principles. In particular control theory, signal proces-
sing and variational principles are useful in the modern design of adaptive grid algorithms. The
techniques extend beyond ordinary differential equationsto partial differential equations, where
grid refinement and moving mesh algorithms are of importance.
In this talk, we will focus on new techniques for ODEs, DAEs and two-point BVPs. Examples will
be given to illustrate
1) Step size control affects computational stability
2) Hamiltonian systems can be solved with both energy conservation and adaptive step size selec-
tion; as a result, both accuracy and efficiency increase
3) Grid refinement (or moving meshes) can be constructed based on variational principles
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Numerical solution of 1D and 2D shallow water equations in the MATLAB environment
Gerd Steinebach
(University of Applied Sciences Bonn-Rhein-Sieg, Germany)

Many engineering models concerning water flow in rivers or coastal regions are based on the
shallow water equations (SWE). These well known hyperbolic equations can be derived from mass-
and momentum conservation principles. The main difficulties for numerical solution schemes arise
from the friction slope, form variable bed elevations and the drying and rewetting of regions within
the computational domain.
These difficulties are analysed and appropriate space-discretization schemes are proposed. A wi-
dely open question is the choice of the time-integrator. Numerical comparisons are performed
with the default MATLAB integrators and new MATLAB implementations of the ROW-method
RODASP, the stabilized Runge-Kutta methods ROCK2 and ROCK4 andcombinations of those.
The problem solving environment MATLAB has been choosen forthese studies because of it’s
ease of use. I.e. 2600 lines of code of the FORTRAN implementation of RODASP could be
reduced to 320 lines in MATLAB. Moreover, MATLAB is a widely accepted computing platform
in the engineering community.

Pattern Formation due to Cell Motion
Angela Stevens
(Max-Planck-Institute for Mathematics in the Sciences, Germany)

Cell motion and reorientation is a fundamental process in early development, tissue organization,
and tumor metastasis. Changes of behavior on the microscopiclevel - singel cell motion - of-
ten result in changes of structures on the macroscopic levelof cell populations. To undestand
these effects in detail, mathematical models for chemotaxis and cellular aligment are discussed
and connections between models on different scales derived. Transport type models as well as
parabolic models are of interest in this context.

High-order exponential operator splitting methods for thetime-dependent Schr̈odinger equa-
tion
Mechthild Maria Thalhammer
(University of Innsbruck, Austria)

In this talk, I am concerned with deducing high-order error bounds for exponential operator split-
ting methods. The employed techniques are specific to differential equations that involve an un-
bounded linear operator. In particular, evolutionary Schrödinger equations with sufficiently regular
initial values are included in the analysis.

Abstract Differential-Algebraic Equations
Caren Tischendorf
(Universiẗat zu Köln, Germany)

The simulation of complex systems describing different physical effects becomes more and more of
interest in various applications, for instance, in chip design, in the development of micro-electro-
mechanical systems (MEMS), in structural mechanics, in biomechanics and in medicine. The
modeling of complex processes often lead to coupled systemsthat are composed of ordinary diffe-
rential equations (ODEs), differential-algebraic equations (DAEs) and partial differential equations
(PDEs).
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Such coupled systems can be regarded in the general framework of abstract differential-algebraic
equations of the form

A(u, t)
d
dt
D(u, t) + B(u, t) = 0, t ∈ [t0, T ].

This equation is to be understood as an operator equation with operatorsA(·, t), D(·, t) andB(·, t)
acting in real Hilbert spaces whereu : [t0, T ] → X is the solution belonging to a problem adapted
space. For most coupled systems, the operatorsA andD are neither identically zero nor invertible
on the time interval[t0, T ].

A general theory of abstract differential-algebraic equations (ADAEs) does not exist and can not
be expected to be given considering alone the complexity of problems simulating partial differen-
tial equations. However, special classes of ADAEs have recently been successfully analyzed and
simulated. We want to give a short overview of treated classes and discuss basic ideas of different
approaches to handle coupled problems.

Integration of large stiff systems of ODEs with exponential propagation iterative (EPI) me-
thods
Mayya Tokman
(University of California, Merced, USA)

New exponential propagation iterative (EPI) schemes are designed to efficiently integrate large
stiff systems of ODEs over long time intervals. The EPI methods are constructed by approxima-
ting the integral form of the solution to a nonlinear autonomous system of ODEs by an expansion
in terms of products between special functions of matrices and vectors. The matrix function-vector
products are calculated using Krylov subspace projections. For problems where no good precondi-
tioner is available, the EPI integrators can outperform standard methods since they possess superior
stability properties compared to explicit schemes and offer computational savings compared to im-
plicit Newton-Krylov integrators by requiring fewer Arnold iterations per time step. We discuss
construction of the EPI schemes and present several methodsof this type. Performance of the EPI
methods is demonstrated using illustrative numerical examples and comparisons with standard
explicit and implicit integrators.

Optimal scaling of high index DAEs
Lorenzo Trainelli , Carlo Bottasso
(Dipartimento di Ingegneria Aerospaziale, Politecnico diMilano, Italy)

We develop a new theoretical analysis which justifies the difficulties arising from finite precision
arithmetics in the numerical solution of high index differential algebraic equations (DAEs). As it
is well known, errors and perturbations pollute the numerical solution causing disastrous effects
for small values of the time step size.
Among the remedies presented so far in the literature, the vast majority attack the problem by
lowering the differential index to 2 or 1, seeking higher numerical robustness. In this approaches,
the governing equations are tipically recast in some convenient form and/or additional constraints
and multipliers are introduced, increasing the complexityof the basic framework.
In this work, we take a different route altogether. Based on the previous analysis, we propose a
preconditioning strategy consisting of a simple scaling ofthe unknowns and the equations which
completely cures the conditioning and sensitivity to perturbations. As a result, the robustness of
the numerical solution is radically enhanced, as confirmed by numerical experiments.
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This remarkably plain recipe, that can be trivially implemented in existing codes, leads to per-
fect time step size independence for the perturbations of all solution fields and condition number,
basically making high index DAEs as easy to solve numerically as well behaved ODEs.

Modelling nematode swimming behaviour using the immersed boundary method
Rebecca Tyson, Chris Jordan, Justin Hebert, Lisa Fauci
(University of British Columbia Okanagan, Canada)

How does a given aquatic organism’s wiggling result in propulsion? This has been well investiga-
ted in fish and in microorganisms such as bacteria where the viscous or inertial terms of the fluid
equations can be ignored. Less has been done at intermediateReynolds’ Number, and further-
more, the actual interaction between the organism’s musculature and the surrounding fluid is not
well understood. In this talk we focus on the swimming behaviour of the nematode, a roundworm
The immersed boundary method lends itself very well to the study of organism locomotion in fluid.
Movement of passive nematode-like structures has been successfully modeled in complex flows.
Active swimming of small organisms has also been sucessfully modelled when the restlength of
each muscle segment is prescribed, and an energy minimum fororganism configuration obtained.
We are interested in modelling the development of swimming motion from rest, when motion is
generated by the contraction of innervated muscle segments.
We have developed a three-dimensional model for the body structure of the nematode, which
explicitly models the organism’s musculature. The immersed boundary method is then used to
communicate between the nematode body and the surrounding fluid. This model allows us to
study how the nematode musculature and surrounding fluid interact to create propulsion of the
nematode.

Exponentially-fitted Obrechkoff methods
Marnix Van Daele, G. Vanden Berghe
(Ghent University, Belgium)

In the last 15 years our research group has done a lot of work onexponential fitting. This research
has lead to exponentially fitted linear multistep methods and Runge-Kutta methods. Typically,
these methods have coefficients with depend on a parameter and the idea is to choose the parameter
in such a way that the method is optimized in some sense.
In the present talk, we consider the construction of exponentially-fitted Obrechkoff two-step me-
thods for second order differential equations. We focus on various aspects, such as the order and
the stability of such a method.

A time-parallel time-integration method for ordinary and p artial differential equations
Stefan Vandewalle, Martin Gander, University of Geneva
(Katholieke Universiteit Leuven, Department of Computer Science, Belgium)

During the last twenty years several algorithms have been suggested for solving time dependent
problems parallel in time. In such algorithms parts of the solution later in time are approximated
simultaneously to parts of the solution earlier in time.
A recent method was presented in 2001 by Lions, Maday and Turinici, who called their algorithm
the parareal algorithm [1]. The name was chosen for the iterative algorithm to indicate that it is
well suited for parallel real time computations of evolution problems whose solution can not be
obtained in real time using one processor only. The method isnot meant as a method to be used
on a one processor computer. One iteration of the method costs already as much as the sequential
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solution of the entire problem, when used on one processor only. If however several processors are
used, then the algorithm can lead to an approximate solutionin less time than the time needed to
compute the solution sequentially.
The parareal algorithm has received a lot of attention over the past few years and extensive ex-
periments have been done for fluid and structure problems. Inthis talk, we will show that the
parareal algorithm can be reformulated as a two-level space-time multigrid method with a strong
semi-coarsening in the time-dimension. The method can alsobe seen as a multiple shooting me-
thod with a coarse grid Jacobian approximation. These equivalences have opened up new paths for
the convergence analysis of the algorithm, which is the topic of the second part of this talk.
First, we will show a sharp linear, and a new superlinear convergence result for the parareal al-
gorithm applied to ordinary differential equations. We then use Fourier analysis to derive con-
vergence results for the parareal algorithm applied to partial differential equations. We show that
the algorithm converges superlinearly on bounded time intervals, both for parabolic and hyperbo-
lic problems. On long time intervals the algorithm converges linearly for parabolic PDEs. For
hyperbolic problems however there is no such convergence estimate on long time intervals.
References
[1] Lions, Maday, and Turinici, A ”parareal” in time discretization of PDE’s, C.R. Acad.Sci. Paris,
t.332, pp. 661-668, 2001.

An algebraic multigrid method for high order time-discreti zations of the div-grad and curl-
curl equations
Stefan Vandewalle, Tim Boonen
(Katholieke Universiteit Leuven, Department of Computer Science, Belgium)

The spatial discretization of time-dependent partial differential equations by finite elements, finite
difference or finite volumes leads to systems of ordinary differential equations of very large dimen-
sion. Such systems can no longer be solved efficiently by classical ODE software. Their solution
requires specialized solvers that take the structure of theproblems into account.
When using higher order implicit Runge-Kutta or Boundary ValueMethod time-discretization
schemes, the size of the system to be solved in every time stepamounts to a multiple of the number
of spatial unknowns. We will show in this talk that these systems can be solved very efficiently,
with a complexity that is linear in the number of unknowns when multigrid PDE-algorithms are
used.
We will present in particular an algebraic multigrid algorithm fully coupled implicit discretizations
of the time-dependent diffusion and curlcurl equations. The algorithm uses a blocksmoother, upda-
ting all stage values related to a grid point simultaneously. The multigrid hierarchy can be derived
from the hierarchy built by any suitable AMG algorithm for the stationary version of the problem
considered. By a theoretical analysis and numerical experiments, we show that the convergence of
the algorithm is similar to the convergence of the stationary AMG algorithm on which it is bas

Recent advances in multiscale modeling of the circulatory system
Alessandro Veneziani, L. Formaggia, C. Vergara
(Politecnico di Milano, Italy)

Geometrical multiscale modeling of the arterial tree has been exploited in different contexts, inclu-
ding cases of clinical interest (see e.g. [1,2,3]). This approach relies on the numerical coupling of
models with a different level of accuracy, ranging from 3D models in a vascular district of interest
to lumped parameters models for the description of the peripheral arteries, the venous system, the
heart. These numerical models can be regarded as the outcomeof a domain decomposition of the
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problem formulated over the whole circulatory system and a model simplification in the regions
far from the district of interest. In this approach, there are two main issues:

1. the mathematically sound approximation of defective data problems, i.e. 3D problems with
incomplete boundary data (e.g. mean pressure or flow rate), obtained when the simplified
models are used for specifying boundary data to the accurate3D models in an iterative
framework;

2. the numerical coupling of the different submodels.

In this talk, we address some recent results concerning the former issue. In particular, we consider
a general approach for solving in a reliable way defective boundary problems, based on the solution
of suitable control problems.
References:

1. L. Formaggia, F. Nobile, A. Quarteroni, A. Veneziani, Multiscale modeling of the circulatory
system: a preliminary analysis, CVS 2, pp.75-83 (1999)

2. F. Migliavacca, R. Balossino, G. Pennati, G. Dubini, T. Hsiab, M. de Leval, E.L. Bove,
Multiscale modeling in bio-fluiddynamics, application to reconstructive paediatric surgery,
to appear in J. Biomech

3. K. Lagaǹa, R. Balossino, F. Migliavacca, G. Pennati, M. de Leval, E.L. Bove,G. Dubini,
Multiscale modeling of the cardiovascular system: application to the study of pulmonary
and coronary perfusions in the univentricular circulation, J. Biomech. 38:1129-1141

General Linear Methods for Index-2 Differential-Algebraic Equations
Daniel Weiß
(University of Cologne, Mathematical Institut, Germany)

General linear methods (GLMs) were introduced approximately thirty-five years ago as a unifying
approach for the study of consistency, stability and convergence of the Runge-Kutta and the linear
multistep methods. Actually new methods which were neitherRunge-Kutta nor linear multistep
methods were derived.
Differential-Algebraic equations (DAEs) arise in varioussimulation problems like chemical reac-
tions, electric circuits, and mechanical multibody systems. They are characterized by their per-
tubationindex which provides a measure of the sensitivity of the solution to pertubations in the
equation. Differential-Algebraic equations of multibodysystems have in general Index 3, but in
their GGL-Formulation the Index is reduced to 2.
The present talk concerns the consistency, stability and convergence of general linear methods for
Index-2 DAEs in Hessenbergform. Furthermore it deals with aspecial class of GLMs, the so called
multistep collocation methods. The convergence of such methods can be improved by a certain
projection step.
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Calculation of Transient Magnetic Fields Using 3R-Strategies
Georg Wimmer, Thorsten Steinmetz, Daniel Weida, Markus Clemens
(Helmut-Schmidt-Universiẗat Hamburg, Germany)

The discretization of transient magneto-dynamic field problems with geometric discretization sche-
mes such as the Finite Integration Technique or the Finite-Element Method based on Whitney form
functions results in nonlinear differential-algebraic systems of equations of index 1. Their time
integration with embeddeds-stage singly diagonal implicit Runge-Kutta methods requires the so-
lution of s nonlinear systems within one time step. Accelerated solution of these schemes is achie-
ved with techniques following so-called 3R-strategies (”reuse,recycle,reduce”). This involves
e.g. the solution of the linear(-ized) equations in each time step where the solution process of the
iterative preconditioned conjugate gradient method reuses and recycles spectral information of pre-
vious linear systems. Additionally, in order to resolve induced eddy current layers sufficiently and
regions of ferromagnetic saturation that may appear or vanish depending on the external current
excitation a combination of an error controlled spatial adaptivity and an error controlled implicit
Runge-Kutta scheme is used to reduce the number of unknowns for the algebraic problems effec-
tively and to avoid unnecessary fine grid resolutions both inspace and time. To allow for a transient
mesh refinement while avoiding repeated and computationally expensive re-meshing processes an
advanced hanging node technique is applied using tree-typedata structures. Continuity constraints
at the hanging nodes are enforced within the iterative solution process which additionally uses
subspace projection deflation-type techniques for furtheracceleration. First numerical results for
2D nonlinear magneto-dynamic problems validate the presented approach and its implementation.

The scaling and squaring technique for matrices related to the exponential
Will Wright
(La Trobe, Australia)

Exponential integrators require the evaluation of matrices closely related to the matrix exponential.
Often the number of the so calledϕ functions evaluated is related to the order that the exponential
integrator can achieve. We will examine what a near optimal choice of the degree of the Padé
approximation is and how to scale and square theϕ functions efficiently.

Legendre Scaling function for solving of generalized Emden-Fowler equations
Sohrab Ali Yousefi, Ehsan Banifatemi
(Department of Mathematics, Shahid Beheshti University,Tehran, Iran)

A numerical solution of the generalized Emden-Fowler equations as singular initial value pro-
blems is presented. We first rewrite Emden-Fowler equation in the form of integral equation by
using especial integral operator and then applying Legendre scaling function approximation. The
properties of Legendre scaling function are first presented. These properties together with the
Gaussian integration method are then utilized to reduce theintegral equations to the solution of al-
gebraic equations. Illustrative examples are included to demonstrate the validity and applicability
of the technique.

Method of Lines for Stochastic Partial Differential Equations
Mostafa Zahri , Andreas R̈oßler, Mohammed Seaid
(Fachbereich Mathematik, Johann Wolfgang Goethe-Universitaet, Germany)

We propose a class of numerical methods for solving stochastic boundary-value problems. The
methods use the deterministic method of lines to treat the time, space and randomness separately.
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The spatial discretization can be carried out using standard finite difference or finite volume me-
thods, while the associated stochastic differential system is numerically solved using an embedded
stochastic Runge-Kutta method. The performance of the proposed method is tested for a stocha-
stic heat equation and a stochastic advection-diffusion problem driven with white noise. Numerical
results are presented in both one and two space dimensions.

Numerical Solutions of Design Nonplanar Transistor Structures. Hydrodynamics Approach
Alexander Zakharov, Balashov A., Krupkina T.
(Institute of Microtechnologies Russian Research Center ”Kurchatov Institute”, Russia)

Numerical modeling is a very effective tool for developmentand optimization of integrated devices
that allows to minimize development time and costs. The problems of numerical modeling and
simulation of non-planar transistor structures with aid ofTCAD have been investigated. The most
complicated aspects have been defined and analyzed: modeling of shallow doping profiles and
non-planar gate, mesh defining and building, simulation of non-local effects that affect the device
performance.
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Wensch, J̈org Universiẗat Potsdam, Institut für Mathematik
wensch@math.uni-potsdam.de

Germany

Wimmer, Georg Helmut-Schmidt-University Hamburg
g.wimmer@hsu-hh.de

Germany

Wright, Will La Trobe University
w.wright@latrobe.edu.au

Australia

Yousefi, Sohrab Ali Iran
s-yousefi@sbu.ac.ir

Iran

Zahri, Mostafa University Frankfurt
zahri@math.uni-frankfurt.de

Germany

Zakharov, Alexander Yu. Institute of Microtechnologies of Russian Rese-
arch Center ”Kurchatov Institute”
zakharov@srisa.ru

Russia

72



List of Speakers

Abdulle,14, 18
Amodio,9, 18
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