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1 General Information

1. Conference Location and Lecture Rooms
The conference will take place in the lecture rooms of the QgepScience Building si-
tuated on the von-Seckendorff-Platz 1. There is a suffiidatge number of free parking
places available.

Opening of the seminar as well as plenary lectures take phdeeture room 3.28.

2. Conference Office and Registration
The conference office is open on Sunday, September 3, 20064mp.m. to 8 p.m. in the
lobby of the Intercity Hotel Halle-Neustadt.

On the other days it is situated in the Institute of Computeer@® in room 1.18, von-
Seckendorff-Platz 1. It is open on Monday, Tuesday and Tay$rom 8 a.m. to 4 p.m.,
and on Wednesday and Friday from 8 a.m. to 12 a.m. You can tbaatonference office
by phone (+49 (345) 5524799) and by fax (+49 (345) 5527004¢s€ lines are active from
Monday, September 4, 2006.

Please register at the conference office after your arrivaére you will also receive your
conference documents.

Participants who did not use the bank transfer pay the cenéerfee in cash at the confe-
rence office. Please note that we cannot accept credit cantheques.

3. Time of Lectures and Discussion
Please note that the lecture times as given in the prograrmeeds include 5 minutes for
discussion.

4. Coffee and Tea Breaks
Coffee and tea are provided during the morning and afternoeakis.

5. Lunch Break
The Mensa Weinbergs a 15 minute walk away. Please ask local participants ostii€in
the conference office for further information. A cafetedddcated at the ground floor of the
Computer Science building.

6. E-mail
Computers for internet access are available in room 3.03.
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7. Conference Dinner
The conference dinner will be held in the Intercity Hotel ldaNeustadt on Thursday, Sep-
tember 7, 2006 at 7 p.m. One dinner ticket is included in thder@nce fee; accompanying
persons pay EUR 30. The fee for the dinner is payable in casinwégistering in the
conference office.

8. Guided Tour on Wednesday afternoon
You are invited to an excursion to the town of Freyburg on theks of the river Unstrut
on Wednesday, September 6, 2006 (included in the confefeafeBuses are leaving from
the conference venue at 1 p.m. and return to Halle at 7 p.m. u@moar to Freyburg we
will visit the Rotkappchen Sektkellerei and taste the locally produced spgridine. You
will also have the chance to visit some of the other attrastia Freyburg or walk along the
river Unstrut to enjoy the beautiful scenery. Please regiat the conference office if you
are interested.

9. Conference Proceedings
Selected papers will be published in a Special Issue of thendbApplied Numerical Ma-
thematics Guest editors are M. Arnold, B.P. Sommeijer, J.G. VerwerlRn@/einer.

Submitted conference papers must deal with original wotkpnblished elsewhere and will
be refereed according to the standard journal procedure.

Seehttp://wwv. el sevi er. coni | ocat e/ apnumfor the statement of objectives
and instructions for the authors.

Papers should be submitted electronically (in pdf or ps &ijmdirectly to
B.P.Sommeijer@cwi.nl

The deadline for submission is December 1, 2006.

Authors are encouraged to use the journal style files, segitka web address for instruc-
tions. The paper length is restricted to 20 style file pages.



2 Programme Overview

Monday, September 4, 2006

8.30-8.50
8.50-9.40
9.40-10.30

10.50-11.40
11.40-12.30

14.00-14.25
14.25-14.50
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15.15-15.40

16.10-16.35
16.35-17.00
17.00-17.25
17.25-17.50

Tuesday, September 5, 2006

8.30-9.20
9.20-10.10

10.40-11.05
11.05-11.30
11.30-11.55
11.55-12.20

Room 3.28
Opening
Calvo
Munthe-Kaas
Frank
Vandewalle

Room 1.23 Room 1.26 Room 1.27 Room 1.29
Hundsdorfer Hath, Z. Amodio Dubinkina
Jahnke Hosseini Moreta Gerdts
Gerisch Shindin Sestini Lamour
Bratsos Milde Saravi
Simeon Hill &Bler Kulikov
Lunk Hewitt Debrabant Kolpakov, A.G.
Pulch Weil3 Zabhri Kolpakov, A.A.
Gruschinski  Klymenko Yousefi

Room 3.28
Barton
Lubich

Room 1.23 Room 1.26 Room 1.27 Room 1.29
Geiser Jebens Aja Kramer
Scidle Schmitt Barbeiro Lutoshkin
bpez-Ferandez Bartoszewski Ordokhani Trainelli
Hanke Boutelje Gorbunov  Arnold



14.00-14.30
14.30-15.00
15.00-15.30
15.30-16.00
16.30-17.00
17.00-17.30
17.30-18.00

Room 1.23

Minisymposium:
Exponential Integrators

Ostermann
Matthews
Skaflestad
Tokman
Thalhammer

Wright

Butcher

Wednesday, September 6, 2006

8.30-9.20
9.20-10.10

10.40-11.05
11.05-11.30

Thursday, September 7, 2006

8.30-9.20
9.20-10.10

10.40-11.05
11.05-11.30
11.30-11.55
11.55-12.20

14.00-14.30
14.30-15.00
15.00-15.30
15.30-16.00
16.30-17.15
17.15-18.00

Vandewalle
Benderskaya
Horvath, R.
Wimmer

De Raedt
Botchev

Minisymposium:
Maxwell equations and Elec-
tromagnetics

Room 1.26

Minisymposium:
Numerical Methods in Ma-
thematical Biology

14.00-14.45 Stevens
14.45-15.10 Ferreira

15.10-15.35 Huisinga
15.35-16.00 Pham Thi

16.30-16.55 Tyson
16.55-17.20 Veneziani
17.20-17.45 Ayati

17.45-18.00 General discussion

Room 3.28
8derlind
Abdulle

Room 1.23 Room 1.26 Room 1.27 Room 1.29
Modin Biutigam Van Daele  Qamar
Niesen Shapeev Ledoux Semin

Room 3.28
Ruuth
dngel
Room 1.23 Room 1.26 Room 1.27 Room 1.29
Arraas Tischendorf Savcenco Naidoo
Knoth Selva Soto  Pfeiffer Perminov
Steinebach Bartel Kanth Rahimpour
Seaid Chudej Pace Zakharov
Room 1.23 Room 1.26

Minisymposium:
Mesh-free Methods

14.00-14.35 Melenk
14.35-15.10 Schweitzer
15.10-15.45 agpar
16.15-16.50 Junk
16.50-17.25 Kuhnert
17.25-18.00 Sarler



Friday, September 8, 2006

Room 3.28

8.30-9.20 Brugnano
9.20-10.10 Podhaisky
10.30-11.20 In’t Hout
11.20-12.10 Serban
12.10-13.00 @nther
13.00 Closing



3 Scientific Programme

Room 3.28
8.30-8.50
8.50-9.40

9.40-10.30

10.30-10.50

10.50-11.40

11.40-12.30

12.30-14.00

Room 1.23
14.00-14.25

14.25-14.50

14.50-15.15

15.15-15.40

15.40-16.10
16.10-16.35

16.35-17.00

17.00-17.25

17.25-17.50

Monday, September 4, 2006

Opening

Mari Paz Calvo, E. Cuesta and C. Palencia

Runge-Kutta convolution quadrature methods for equatiatis mvemory: The
non-analytic case

Hans Z. Munthe-Kaas

On Multivariate Chebyshev Polynomials; from Group Theoritonerical Ana-
lysis

— Break —

Jason Frank, S. Reich, B. Moore
Local conservation and multisymplectic discretizatiomsHamiltonian PDEs

Stefan Vandewalle Martin Gander
A time-parallel time-integration method for ordinary andrial differential
equations

— Lunch -

Willem Hundsdorfer
Numerical Simulation of Streamers

Tobias Jahnke Wilhelm Huisinga
Dynamical low-rank approximation of the chemical mastaragpn

Alf Gerisch, Jens Lang, Helmut Podhaiskyii&ger Weiner

FE time-stepping using high-order two-step PEER methods

Athanassios Bratsos

A fourth-order implicit scheme for the two-dimensionalesiGordon equation

— Break —

Bernd Simeon
Dynamic Contact and Differential-Algebraic Equations

Christoph Lunk , Bernd Simeon
Solving Partial Differential-Algebraic Equations in Sttural Mechanics: App-
lications and Enhanced Treatment by Adaptive Mesh Refinement

Roland Pulch, Stephanie Knorr

Wavelet-based Adaptive Grids for Solving Multirate Pdrt@ifferential-
Algebraic Equations

Hannes Gruschinski Bradley T Burchett, Richard A Layton, M. Bikdash
Numerical Aspects of Modeling and Control of Inverted PendulJsing Kal-
man Filtering, DAES, and Energy Based Lyapunov Functions



Room 1.26

14.00-14.25 Zoltan Horvath
Unified approach to proving qualitative properties of Rukggta methods with
applications
14.25-14.50 Mohammad Mahdi Hosseini
A Reliable Adomian Decomposition Method for Ordinary Diffetial Equations
14.50-15.15 Sergey Shindin G. Yu. Kulikov
One Family of Symmetric One-Step Methods of Order Four
15.40-16.10 — Break —
16.10-16.35 Adrian Hill
Algebraically stable general linear methods
16.35-17.00 Laura Hewitt, Adrian T. Hill
Symplectic General Linear Methods
17.00-17.25 Daniel Weil3
General Linear Methods for Index-2 Differential-Algelr&quations

17.25-17.50 Oleksiy Klymenko, I.B. Svir
Numerical solution of stiff ODEs modelling chemical Kiresi

Room 1.27

14.00-14.25 Pierluigi Amodio, Felice lavernaro
Symmetric Boundary Value Methods for Second Order Initial Boundary Va-
lue Problems

14.25-14.50 Maria Jesls Moreta, Blanca Bujanda, Juan Carlos Jorge
Fractional step Runge-Kutta-Ny8tn methods for evolution problems of
second-order in time

14.50-15.15 Alessandra Sestini Francesca Mazzia and Donato Trigiante
BS Methods and their Associated Spline

15.15-15.40 Thomas Milde
Computing Eigenfunctions of Singular Points in Nonlineara®aetrized Two-
Point BVPs

15.40-16.10 — Break —

16.10-16.35 Andreas RoRler, Kristian Debrabant
Efficient Stochastic Runge-Kutta Methods for the Weak Appr@tion of the
Solution of SDEs

16.35-17.00 Kristian Debrabant, Andreas RBler

Continuous Extension of Stochastic Runge-Kutta methodshfoMfeak Appro-
ximation of SDEs



17.00-17.25 Mostafa Zahri, Andreas RR3ler, Mohammed Seaid
Method of Lines for Stochastic Partial Differential Equais
Room 1.29
14.00-14.25 Svetlana Dubinkina, J. E. Frank, J. G. Verwer
A fully Lagrangian constrained hydrostatic method for aspizeric flows
14.25-14.50 Matthias Gerdts
A Nonsmooth Newton’s Method for DAE Optimal Control Problems
14.50-15.15 René Lamour, Roswitha Marz
Tractability Index = Strangeness Index +1
15.15-15.40 Masoud Saravi E. Babolian, R. England, M. Bromilow
System of Linear Differential Equations and Differentigebraic Equations
15.40-16.10 — Break —
16.10-16.35 Gennady Kulikov
Criticism of Asymptotic Global Error Expansion with a New Expbolation
Theory
16.35-17.00 Alexander G. Kolpakov

The Network Models and Asymptotic of Capacity of a System of&€lp-Placed
Bodies

17.00-17.25 Alexander A. Kolpakov
An Integrated Design Procedure for Design of Smart Strestur

17.25-17.50 Sohrab Ali Yousefi, Ehsan Banifatemi
Legendre Scaling function for solving of generalized Emé&ewler equations
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Room 3.28

8.30-9.20

9.20-10.10

10.10-10.40

Room 1.23
10.40-11.05
11.05-11.30
11.30-11.55
11.55-12.20

Room 1.26
10.40-11.05
11.05-11.30
11.30-11.55

11.55-12.20

Room 1.27
10.40-11.05

11.05-11.30

11.30-11.55

Tuesday, September 5, 2006

Paul I. Barton, Benoit Chachuat

Simulation and Optimization of Partial Differential-Algeic Equations with a
Separation of Time Scales

Christian Lubich , O. Koch and A. Nonnenmacher

Dynamical low-rank approximation

— Break —

Jurgen Geiser, Istvan Fara@

Stable Iterative Operator-Splitting Methods for StifleBlems of Parabolic
Equations: Theory and Applications

Achim Schadle, M. Lopez-Fernandez, Ch. Lubich

Fast and oblivous convolution

Maria Lopez-Ferréndez Christian Lubich, @sar Palencia, and Achim Sudie
Fast Runge-Kutta approximation of inhomogeneous parabgli@tions

Michael Hanke, Donald O. Besong, Kristian Dreij, Ralf Morgenstern, Bengt
Jernstom

A Numerical Model for Diffusion and Reaction in Cells via Honsgzation

Stefan JebensRudiger Weiner

Explicit parallel two-step peer methods

Bernhard A. Schmitt, Rudiger Weiner

Parameter optimization for explicit parallel peer twogsteethods
Zbigniew Bartoszewski

Implicit TSRK methods of order three and their continuougesions

Bruce Boutelje
Multipliers and the nonlinear stability of linear multiptenethods

Adeérito Ara Gjo, J. A. Ferreira
On the stability of a splitting method for integro-diffetel equations

Silvia Barbeiro, J.A.Ferreira
Integro-differential model of percutaneous drug absartio

Yadollah Ordokhani, Bahman Arabzadeh
A collocation method for solving nonlinear differentialuegions via hybrid of
rationalized Haar functions
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11.55-12.20

Room 1.29

10.40-11.05

11.05-11.30

11.30-11.55

11.55-12.20

Room 1.23

14.00-14.30

14.30-15.00

15.00-15.30

15.30-16.00

16.00-16.30

16.30-17.00

17.00-17.30

17.30-18.00

Room 1.26

14.00-14.45

14.45-15.10

Vladimir Gorbunov , V.Yu. Sviridov
The normal spline method for numerical solution of lineaxgsilar differential
and integral equations

Felix Kramer
Linear Multistep methods for quasi-singular perturbecdpems

Igor Lutoshkin , V.K. Gorbunov
The parametrization method for numerical solution of slagdifferential equa-
tions

Lorenzo Trainelli, Carlo Bottasso
Optimal scaling of high index DAESs

Martin Arnold
High-order time integration and discontinuities in thehtipand side

Minisymposium: Exponential Integrators

Alexander Ostermann

Recent developments in exponential integrators

Paul Matthews, Hala Ashi

Which ETD method?

Bard Skaflestad Anne Kvaerng

Exponential integrators and spectral element methods

Mayya Tokman
Integration of large stiff systems of ODEs with exponenpiapagation iterative
(EPI) methods

— Break —
Mechthild Thalhammer
High-order exponential operator splitting methods for time-dependent
Schibdinger equation

Will Wright
The scaling and squaring technique for matrices relateldg@xponential

John Butcher
Order and stability of general linear methods

Minisymposium: Numerical Methods in Mathematical Biology

Angela Stevens
Pattern Formation due to Cell Motion

Jo<t Ferreira, P. Oliveira
Memory effects and random walks in reaction-transportesyist
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15.10-15.35 Wilhelm Huisinga, A. Alfonsi, E. Cances, G. Turinici, B. Di Ventura
Deterministic models of chemical reactions coupled tolsdstic reaction kine-
tics for efficient simulation of cellular systems

15.35-16.00 Nguyet Nga Pham Thj B. P. Sommeijer, J. Huisman
Numerical treatment of integro-PDESs for Phytoplanktonaiyics
16.00-16.30 — Break —
16.30-16.55 Rebecca TysonChris Jordan, Justin Hebert, Lisa Fauci
Modelling nematode swimming behaviour using the immerseobary method
16.55-17.20 Alessandro VenezianjL. Formaggia, C. Vergara
Recent advances in multiscale modeling of the circulatosyesy

17.20-17.45 Bruce Ayati
Moving-Grid Galerkin Methods for Structured Multiscale Nkds of Biological
Systems

17.45-18.00 General discussion
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Wednesday, September 6, 2006

Room 3.28
8.30-9.20 Gustaf Sbderlind
Adaptive Grids
9.20-10.10 Assyr Abdulle
Efficient coupling of micro-macro methods for hierarchicalltiscale modeling
10.10-10.40 — Break —
Room 1.23
10.40-11.05 Klas Modin, Claus Fihrer and Gustaf&lerlind
Adaptivity in mechanical integrators
11.05-11.30 Jitse Niesen Per Christian Moan
On the convergence of the Magnus series
Room 1.26
10.40-11.05 Nils Brautigam, Walter Alt
Discretization of Elliptic Control Problems
11.05-11.30 Vasily Shapeey Alexander Shapeev
Solving elliptic problems with singularities using finitédfdrence schemes
Room 1.27
10.40-11.05 Marnix Van Daele, G. Vanden Berghe
Exponentially-fitted Obrechkoff methods

11.05-11.30 Veerle Ledoux M. Van Daele and G. Vanden Berghe
The solution of singular Schdinger problems using a piecewise perturbation
method

Room 1.29
10.40-11.05 Shamsul Qamar, Gerald Warnecke
High Resolution Finite Volume Schemes for Solving PopulaBalance Models

11.05-11.30 Leonid Semin Denis Kharenko
Some aspects of collocation and least squares method ftineanhyperbolic
equations
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Thursday, September 7, 2006

Room 3.28
8.30-9.20 Steven Ruuth Barry Merriman
A Simple Method for Solving PDEs on Surfaces using the CloBesit
9.20-10.10 Ansgar Jungel, Markus Brunk
Numerical coupling of electric circuits and semicondudtevices
10.10-10.40 — Break —
Room 1.23
10.40-11.05 Andrés Arraras L. Portero, J.C. Jorge

An alternating direction scheme for the resolution of then-finear two-
dimensional Richards’ equation on irregular grids
11.05-11.30 Oswald Knoth
Implementation of Rosenbrock methods for compressible spimeric models
11.30-11.55 Gerd Steinebach
Numerical solution of 1D and 2D shallow water equations & MATLAB en-
vironment
11.55-12.20 Mohammed Seaid
An Eulerian-Lagrangian Method for Coupled Parabolic-Hyyodic Equations
Room 1.26
10.40-11.05 Caren Tischendorf
Abstract Differential-Algebraic Equations
11.05-11.30 Monica Selva Soto
Numerical analysis of a coupled model for the simulationletical circuits
11.30-11.55 Andreas Bartel, Michael Striebel and Michael @ther
PDAE Models and Multirate in Chip-Design: Modeling and Siatidn
11.55-12.20 Kurt Chudej, Kati Sternberg, Hans Josef Pesch
Optimal load changes of a fuel cell - boundary control of a EDA
Room 1.27
10.40-11.05 Valeriu Savcencq W. Hundsdorfer, J.G. Verwer
A Multirate Time Stepping Strategy For Stiff ODEs
11.05-11.30 Andreas Pfeiffer
Sensitivity analysis of discontinuous multidisciplinanpdels

11.30-11.55 Daniel Kanth
Adaption of Partitioned Integration Strategies for the @ation of Mechatronic
Systems

11.55-12.20 Brigida Pace Felice lavernaro, Donato Trigiante
On some conservation properties of symmetric methodsegppdi Hamiltonian
systems
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Room 1.29

10.40-11.05 Richard Naidoo
Numerical integration of the extended plasma fluid equatiovith SD3
Kurganov-Levy Scheme
11.05-11.30 Valeriy Perminov
A numerical solution of conjugate problem of forest fireistion
11.30-11.55 M.R. Rahimpour
Numerical solution of a dynamic model for dual methanol teac

11.55-12.20 Alexander Yu. Zakharov, Balashov A., Krupkina T.
Numerical Solutions of Design Nonplanar Transistor Stricees. Hydrodyna-
mics Approach

Room 1.23
Minisymposium: Maxwell equations and Electromagnetics

14.00-14.30 Stefan Vandewalle Tim Boonen
An algebraic multigrid method for high order time-discrations of the div-grad
and curl-curl equations

14.30-15.00 Galina Benderskaya Herbert De Gersem, Thomas Weiland
Numerical Integration of Field-Circuit Coupled Magnetoqgatic Simulation
with Switching Elements

15.00-15.30 Robert Horvath, Istvan Farag, Mike Botchev
A Krylov subspace splitting method for the time integratiohthe Maxwell
equations

15.30-16.00 Georg Wimmer, Thorsten Steinmetz, Daniel Weida, Markus Clemens
Calculation of Transient Magnetic Fields Using 3R-Strategie
16.00-16.30 — Break —
16.30-17.15 Hans De Raedt
Advances in Unconditionally Stable Techniques
17.15-18.00 Mike Botchev
Recent developments in the time integration of the Maxwalbgigns
Room 1.26
Minisymposium: Mesh-free Methods
14.00-14.35 Jens Markus Melenk, Armin Iske and Maike Loehndorf
Convergence analysis of thin-plate spline interpolation
14.35-15.10 Marc Alexander Schweitzer
Adaptive Multilevel Techniques for Meshfree Methods

15.10-15.45 Csaba Gaspar
Multi-level Boundary Meshless Techniques
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15.45-16.15 — Break —
16.15-16.50 Michael Junk

Deterministic particle methods for high dimensional FakRéanck equations
16.50-17.25 Jorg Kuhnert

Finite Pointset Method (FPM): Meshfree Flow Solver in Contim Mechanics

17.25-18.00 Bozidar Sarler
Meshfree Explicit Local Radial Basis Function Collocation Ml for Micros-
copic and Macroscopic Phase Change Simulations

Friday, September 8, 2006

Room 3.28
8.30-9.20 Luigi Brugnano, Cecilia Magherini
Blended Implicit Methods: Theory and Numerics
9.20-10.10 Helmut Podhaisky, Rudiger Weiner
Construction and implementation of peer methods
10.10-10.30 — Break —
10.30-11.20 Karel in’t Hout , Bruno Welfert

Stability of ADI schemes applied to convection-diffusioguations with mixed
derivative terms

11.20-12.10 Radu Serban
Sensitivity Analysis for ODE and DAE systems

12.10-13.00 Michael Gunther, Andreas Bartel, Cathrin van Emmerich, Christian Kahl and
Kai Tappe
Computational Finance - a source of tasks for numerical arsaly

13.00 Closing
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4 Abstracts

Efficient coupling of micro-macro methods for hierarchical multiscale modeling
Assyr Abdulle
(School of Mathematics, University of Edinburgh, Unitechfdom)

Hierarchical multiscale methods based on micro-to-mappr@ches have become increasingly
popular in multiscale modeling and simulation.

The global behavior of such methods depends on the hierarfcbglvers and on the strategy to
couple them. The challenge is thus to couple methods whieh tiee desired properties at the
macro level and capable of sampling the microstructure ibugh precision at the micro level.
In this talk we will discuss these issues. For finite elemeethwods constructed within the frame-
work of the heterogeneous multiscale method (HMM), we pse@new micro-to-macro approach
with robust convergence rates and that is of almost linearpdexity in the macro degrees of
freedom.

Symmetric Boundary Value Methods for Second Order Initial and Boundary Value Problems
Pierluigi Amodio, Felice lavernaro
(Dipartimento di Matematica, Univeraitli Bari, Italy)

We introduce symmetric Boundary Value Methods for the solubf second order initial and
boundary value problems (in particular Hamiltonian profd¢. We study the conditioning of the
methods and link it to the boundary loci of the roots of thepagged characteristic polynomial.
One application will regard the analysis of systems adngtperiodic solutions generated by the
superposition of both high and low frequencies. The aim & i exploiting the good stability
properties of the symmetric methods to define an efficieetiiity procedure (set up by the method
itself) in order to cancel out high frequencies (here uridexs as noise) and correctly reproduce
the remaining part of the spectrum.

On the stability of a splitting method for integro-differen tial equations
Adeérito Ara Gjo, J. A. Ferreira
(University of Coimbra, Portugal)

The classical convection-diffusion-reaction equation tiee unphysical property that if a sudden
change in the dependent variable is made at any point, ibeifelt instantly everywhere. These
phenomena violate the principle of causality.

Over the years, several authors have proposed modificati@rseffort to overcome the propaga-
tion speed defect. The purpuse of this talk is to study a nuadi€in to the classical model that take
in to account the memory effects. Besides the finite speedopiggation, we establish an energy
estimate to the exact solution. We also present a numerietilod that have the same qualitative
property of the exact solution. Finally we ilustrate thedtyewith some numerical results.
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High-order time integration and discontinuities in the right hand side
Martin Arnold
(Martin Luther University Halle-Wittenberg, Germany)

The classical convergence analysis of high-order ODE anl idAe integration methods is based
on smoothness assumptions on the right hand side that arevoflated in practical applications
because of look-up tables, spline interpolation of inpuada. . . Typically, the numerically ob-
served order of convergence for systems with disconteaiiti (derivatives of) the right hand side
is, however, substantially larger than the one that is ptediby theory.

In the paper, this problem is studied for differential equat containing polynomial splines.
From a practical viewpoint, the most important special sase linearC’ splines (spline order
2z + 2 = 2 with z = 0) and cubiaC? splines (spline ordez + 2 = 4 with z = 1).

Classical convergence results fopdh order method predict an error of siggh?) with p =1

if the right hand side of an ODE or of the differential part oDAE contains aC? spline. In
the case ofC? splines a similar estimate withh = min (p, 2z) = min (p,2) is obtained. In the
paper, a more detailed error analysis is presented that tate@account uniform error estimates
for interpolating polynomial splines. An error estim&éh?) with p = min (p, 2z + 2) is proven
that improves the classical error bound by a factoh®fSimilar improvements of classical error
bounds are obtained for DAEs up to index 3 containing polyabsplines in their algebraic part.
The improved error estimates are in perfect agreement withenical test results for a benchmark
problem from vehicle dynamics.

An alternating direction scheme for the resolution of the nam-linear two-dimensional Ri-
chards’ equation on irregular grids

Andrés Arraras, L. Portero, J.C. Jorge

(Universidad Rblica de Navarra, Spain)

This work is devoted to the study of a new efficient time inégr for simulating two-dimensional
isothermal Darcian flows through isotropic and homogen@ousus media. Such phenomena are
modelled by a strongly non-linear parabolic partial diffietial equation (Richards’ equation) of
the following form:

96 ()
ot

OK (¢)
0z

=V [K )V (x,t)] +

wherey = v (x,t)[L] is the pressure head,(y) [L*L~2] is the volumetric moisture content,
K (¢)[LT™] (K (v) > K, > 0) denotes the unsaturated hydraulic conductivityy)) [T7'] is

a source/sink term (for example, the root water uptake fandh soil profiles),t [T] is time and
x = (z, z) [L] represents the vector of spatial dimensions ($ge Suitable initial and boundary
conditions are also added.

Concretely, we consider a modified fractionary implicit Euteethod for discretizing the time
variable, which is combined with a generalized finite diéiece spatial discretization to deduce the
numerical algorithm. As we are dealing with irregular splatiomains, the approximation of the
differential operator makes use of logical rectanguladgend stencils which contain nine points
(see[2]). The scope of this work is to prove that it is possible to getiaconditionally convergent
scheme of alternating direction type. For doing this, weodggose the difference operator in
three terms: two of them will have a three-point stencil {ia same way as in the classical ADI
schemes), acting in implicit mode, and the third one, whidhhve treated explicitly, will contain
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the coefficients of the stencil corners. In this framewohe talculation of each internal stage
is reduced to the resolution of simple sets of tridiagonadrr systems, after the application of
an iterative procedure for solving the non-linear systefsqoiations. Moreover, differing from
the classical fractionary implicit Euler discretizatiotise source/sink term will also be treated as
an explicit term, in order to improve the convergence ratéhefiterative procedure previously
mentioned (sefl]).
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Moving-Grid Galerkin Methods for Structured Multiscale Models of Biological Systems
Bruce P. Ayati
(Southern Methodist University, USA)

We present methods for continuous models of biologicalkesgstwhere the transport in a variable
representing age is computed by the movement of the age Apptoximation error is the only
meaningful source of error in age, resulting in supercayeece properties for the methods. We
discuss the role of this computational method for systentis d@pendence on age, space and time,
and provide an overview of the convergence results to dagecl@ée by presenting example com-
putations for Proteus mirabilis swarm colony developmand, if time permits, biofilm growth.

Integro-differential model of percutaneous drug absortiin
Silvia Barbeiro, J.A.Ferreira
(University of Coimbra, Portugal)

In this talk we propose a model for percutaneous absorpfi@endsug which consists in integro-
differential equations with appropriate initial and boang conditions. We study the qualitative
properties of the model and its numerical approximatiomuation of described numerical me-
thods is carried out with various values of the parameters.

PDAE Models and Multirate in Chip-Design: Modeling and Simulation
Andreas Bartel, Michael Striebel and Michael @ther
(University of Wuppertal, Applied Mathematics, Germany)

Commonly, electric circuits are described by systems of Hil@pendent differential-algebraic
equations (DAEs). The effect of down-scaling renders seéagneffects more and more import-
ant. There are, for instance, thermal-conduction, trassion line phenomena or complex semi-
conductor behavior. Here more sophisticated models etieDAE by spatial systems, which
results in a partial differential-algebraic equation (FHAlepending on both space and time. Both
DAE and PDAE exhibit a very strong and pronounced multistedleavior. Thus, an efficient
simulation technique will demand to design a dedicatedrélgu to these systems.
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Ideally, for heat conduction, only a fast and a slow subsystgists (on the coarse scale). These
can be quasi-decoupled over a communication step. Wher#aswew of a pure circuit, we have
not only latent and active variables, but also several $evkhctivity in between. So we would like
to have a kind of distributed time integration scheme. BaseRasenbrock-Wanner methods an
algorithm of a hierachical multirate scheme was developelbw for a simple generalization to
more than two time scales.

In this talk, we discuss the PDAE-setups in chip-design aed properties. Furthermore we give
an overview of current developments of multirate methodthis field and we will present and
discuss simulation results for the hierachical one-stépse.

Simulation and Optimization of Partial Differential-Alge braic Equations with a Separation
of Time Scales

Paul Barton, Benoit Chachuat

(MIT, USA)

Problems that exhibit multiple time scales arise frequeintlmany scientific and engineering
fields. The modeling and simulation of such systems leadsralft to singular perturbation
models. For systems of partial differential-algebraicatguns (PDAES) in time and one spatial
dimension, the corresponding quasi-steady-state modstisya reduced set of PDAES (slow va-
riables), subject to a set of differential-algebraic etprest (DAES) in the spatial dimension (fast
variables).

In this presentation, we shall consider a particular cldsme-dimensional, quasi-linear PDAEs
with a separation of time scales such thatitie slow variables are lumped (i.e., do not depend
on the spatial dimension), and)(the hyperbolic variables in the fast subsystem have alit the
characteristics pointing in the same direction. Underdluamditions, the quasi-steady-state model
yields two decoupled subsystems, a set of DAEs in time, stibjea set of DAES in the spatial
dimension; hence the nandA\Es embedded DAEs

There are several advantages in using the DAEs embedded &gtsach over the conventional
method of lines (MOL) for such problems. First and foremdsis approach guarantees the ac-
curacy of the solution, in the limit of the slow model approztion validity, since rigorous error
control can be performed by numerical solvers regardingithe and space steps used in either
set of differential equations. This removes the need of simgpa somewhat arbitrary discretiza-
tion as it is the case with the MOL. Furthermore, the DAEs esdieel DAEs approach requires
solution of much smaller sets of differential equationstiath the MOL approach. Therefore,
not only does the proposed approach improve the relialfitthe simulations by removing the
need of initializing large sets of DAES, but it also typigatlutperforms the conventional MOL in
terms of computational time whenever the use of fine meshamies necessary. This also makes
the DAEs embedded DAEs simulation approach particularlly sueted for embedding within a
mathematical programming formulation for optimizatiorrpases.

The developed approach shall be demonstrated on an appilicalated to the start-up simulation
and optimizaton of micro-scale chemical processes foaptatpower generation.
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Implicit TSRK methods of order three and their continuous extensions
Zbigniew Bartoszewski
(Gdansk University of Technology, Poland)

In the talk the construction of implicit two-step Runge-Kuthethods and their continuous exten-
sions that preserve the order of the original TSRK methodkheilpresented. Similar explicit
TSRK methods recently constructed by Z. Bartoszewski and &idaicz TSRK are based on
approximations to the scaled derivatives of the solutionauine order3 (Nordsieck vector) and
have proved to be quite efficient and robust. The results @htimerical tests of their implicit
counterparts carried out on stiff ODEs and DDEs will also tespnted in the talk.

Numerical Integration of Field-Circuit Coupled Magnetoquasistatic Simulation with Swit-
ching Elements

Galina Benderskaya Herbert De Gersem, Thomas Weiland

(TU Darmstadt, Institutifr Theorie Elektromagnetischer Felder (TEMF), Germany)

The 3D transient field-circuit coupled formulation with thwitching elements discretized by the
Finite Integration Technique (FIT) represents a systemiftéréntial-algebraic equations (DAE)
of index 1 and can be solved by any suitable DAE integratoan&ird numerical integration
algorithms for DAE systems always assume that the varidigasy integrated as well as their de-
rivatives stay continuous during the whole simulation tirtveentioned coupled system, however,
exhibits hybrid (continuous/discrete) behavior due to phesence of switching elements in the
circuit part of the model. The discontinuity handling aligam presented here consists of three
steps: event detection, event location and determinati@omsistent initial conditions. For the
last step, a special technique is proposed by which highlysient phenomena at the circuit side
are only resolved by the circuit model avoiding unnecesesaajyuations of the field problem.

Recent developments in the time integration of the Maxwell egations
Mike Botchev
(University of Twente, The Netherlands)

The Maxwell equations are used in the modeling of a vast rafgéectromagnetic phenomena
and comprise a class of partial differential equations Witian have different properties. Ideally,
a choice of a method for the numerical solution of the Maxwgliations should be determined by
the properties of the equations for a particular case. hesafore no surprise that numerics used
for time integration of the Maxwell equations is a versatdenily of methods based on various
ideas and approaches.

In this talk we try to digest some recent developments in iime integration of the Maxwell
equations, with an emphasis on high-order methods, sympleethods and methods involving
matrix functions.

Multipliers and the nonlinear stability of linear multistep methods
Bruce Boutelje
(University of Bath, United Kingdom)

The analysis of the stability ok-stable multistep methods for solving nonlinear stiff sys$ has

long been understood. Unfortunately, Dahlquist’s secaatlidr restricts the order of these me-
thods to2. To analyse the nonlinear stability of higher-ordgy)-stable methods, Nevanlinna &
Odeh (1981) imported the idea of multipliers from contr@dhy. We re-examine this work, paying
particular attention to the restrictions on the nonlinggarResults similar to those of Nevanlinna
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and Odeh are recovered using a new approach, dependingdspamsform and convolution me-
thods from control theory. Multipliers are constructed iban new stability results, under suitable
restrictions on the nonlinearity.

A fourth-order implicit scheme for the two-dimensional sine-Gordon equation
Athanassios Bratsos
(Technological Educational Institution (T.E.I.) of AtterGreece)

The two-dimensional sine-Gordon (SG) equation is given by
Ut = Ugg + Ugyyy — ¢ (l‘, y) sin u

with u = u (x,y,t) in an appropriate regiof for ¢ > 0. A rational approximant of ordet,
which is applied to a three-time level recurrence relatisrysed to transform the SG equation
into a second-order initial-value problem. To avoid sadyvihe resulting nonlinear system an
appropriate predictor-corrector (P-C) scheme, in whichptieglictor is of ordee, is applied. The
behavior of the proposed P-C scheme is tested numericaligg@nd ring solitons known from
the bibliography, regarding SG equation and conclusion®dth the undamped and the damped
problem are derived.

AcknowledgmentThis research was co-funded 75% by E.E. and 25% by the Gree&r@oent
under the framework of the Education and Initial Vocatiohaining Program - Archimedes, Tech-
nological Educational Institution (T.E.I.) of Athens peoj “Computational Methods for Applied
Technological Problenis

Discretization of Elliptic Control Problems
Nils Brautigam, Walter Alt
(Friedrich-Schiller-University Jena, Germany)

We consider linear-quadratic problems of optimal contridfhan elliptic state equation and control
constraints. After a few results of theoretical characterigcretize the restriction and the control
with the method of Finite Differences. Based on this diszegibn we develop error estimates for
the solution of the discret problem und further we find a fiel@stontrola with

i — Tl < cViuh?,
whereu stands for the optimal control unds a constant independent frairandh.

Blended Implicit Methods: Theory and Numerics
Luigi Brugnano, Cecilia Magherini
(Universita degli Studi, Firenze, Italy)

The use of implicit numerical methods is mandatory whenisglgeneral stiff ODE/DAE pro-
blems. Their use, in turn, requires the solution of a comwadmng discrete problem, which is one
of the main concerns in the actual implementation of the oughIn this respect, Blended Impli-
cit Methods [1,2,6] provide a general framework for the &t solution of the discrete problems
generated by block implicit methods. In this talk, we revign@ main facts concerning blended
implicit methods for the numerical solution of ODE [3] and BA5] problems, and their exten-
sion for solving second order problems [4]. A few numerieaks$ obtained with the computational
codeBi MD[7], implementing a variable order-variable stepsize f&himplicit method, are also
reported, in order to confirm the effectiveness of the apgroa
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Order and stability of general linear methods
John Butcher
(The University of Auckland, New Zealand)

The conflict between stability and order of accuracy is walbwn and is exemplified by the two
Dahlquist barriers as well as the Ehle and Daniel-Mooreidar Although the famous order
star theory is an ideal tool for understanding and settlingstjons of this type, an alternative
approach, based on order arrows, is also available. Sommepéss of the use of order arrows
in the understanding of these barriers will be discusseth particular application to Pédand
generalised P@aapproximations. Consider a generalisedéPagproximation defined by

O(w,2) = Py(2)w" + P (z)w" ™ + -+ P.(2) =0,

where®(exp(z), z) = O(z*1) with P(0) = 1 and the ordep is given by

r

=0

with n; = deg(F;). Of particular interest is the so-called Butcher—Chipmanjexare, which
speculates thatn, — p € {0, 1,2} is necessary for A-stability.

Runge-Kutta convolution quadrature methods for equationswith memory: The non-analytic
case

Mari Paz Calvo, E. Cuesta and C. Palencia

(Universidad de Valladolid, Spain)

Runge-Kutta methods, initially designed for the time in&ggmn of ODESs, can also be adapted
to approximate convolution integrals, at least in case #rad is sectorial [2]. This leads, in a
natural way, to numerical schemes for the time integratiaabstract convolution equations of the
form

u(t) = ug + /Ot A(t — s)u(s) ds, t>0.
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In the present talk we address two main issues. First, weneéxtee Runge-Kutta convolution
guadrature to the non-sectorial framework. Second, ingié ef [1], we provide a representation
of the numerical solution in terms of the continuous one,clwhallows us to derive interesting
gualitative properties of the numerical solution. Numakiesults are also provided.
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Optimal load changes of a fuel cell - boundary control of a PDA
Kurt Chudej , Kati Sternberg, Hans Josef Pesch
(Universtitat Bayreuth, LehrstuhLif Ingenieurmathematik, Germany)

Molten carbonate fuel cells (MCFC) are especially well suftadstationary power plants if their
process heat is used to increase their efficiency. MCFCs sekettme soon competitive compa-
red with traditional power plants. The MCFC stationary powant at the university hospital in
Magdeburg reached a worldwide record of 30 000 hours of ¢iperan May 2006. The dynamic
behaviour of MCFCs can be modelled mathematically by a hibyaof systems of partial diffe-
rential algebraic equations (PDAE) in 1D or 2D. Integrairisrappear and the nonlinear boundary
conditions are given partly by a DAE system.

These large PDAE systems of dimension between roughly 1@@mdjuations are discretized by
the method of lines, yielding huge dimensional DAEs.

We will present new computationally very expensive nunaniesults of optimal control during
load changes for a 2D dynamical MCFC model. Faster load clseargeespecially welcome, from
an economical and operational view point, if the very cructastraints on the temperature field
in the interior of the fuel cell are fulfilled.

Acknowledgementfhis research was funded by the BMBF within the profeptimierte Prozess-
fuhrung von Brennstoffzellensystemen mit Methoden derldieaten Dynamik.

We thank especially Prof. Dr.-Ing. Kai Sundmacher and Bg.-Peter Heidebrecht (University of
Magdeburg / Max-Planck-Institutif Dynamik komplexer technischer Systeme Magdeburg) and
Dipl.-Ing. J. Berndt and Dipl.-Ing. M. Koch (IPF Heizkraftnkesbetriebsges. mbH Magdeburg) for
their support.
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Continuous Extension of Stochastic Runge-Kutta methods fothe Weak Approximation of
SDEs

Kristian Debrabant, Andreas RRler

(TU Darmstadt, FB Mathematik, Germany)

To obtain the solution of an ordinary differential equatatrprescribed dense output points, one
can use the well-known class of continuous Runge-Kutta nasthio our talk, we extend this idea
to a class of stochastic Runge-Kutta methods for the appuatiom of It© stochastic differential
equations with respect to a multi-dimensional Wiener psece

Advances in Unconditionally Stable Techniques
Hans De Raedt
(University of Groningen, The Netherlands)

We review recent progress in the development of unconditipstable FDTD algorithms to solve
Maxwell’'s equations. We present a general, unified framk\luat facilitates the construction of
FDTD algorithms (including the Yee algorithm) with specfiioperties. The approach is construc-
tive and modular: It is a recipe for constructing uncondiéitly stable algorithms that are tuned
to particular problems and that can be combined with othepnditionally stable algorithms to
solve more complicated problems. We also review recentrpssgn the development of one-step
algorithms, based on Chebyshev and Faber polynomials, fimngdvlaxwell’s equations.

A fully Lagrangian constrained hydrostatic method for atmospheric flows
Svetlana Dubinkina, J. E. Frank, J. G. Verwer
(CWI, Netherlands)

The hydrostatic primitive equations of motion, which haeeb used in large-scale weather pre-
diction over the last decades, are considered within a lnagga framework. This model is dis-
cretized by extending the Hamiltonian Particle-Mesh meétbbGottwald et al. (2002), in which
the particles represent large masses of fluid. The new medel2D hydrostatic one full ideal
fluid equations in potential temperature function formiolat such that the particle motion is cons-
trained to preserve a hydrostatic state. The spatial ttiorcés (at least locally) Hamiltonian,
making integration with a symplectic method appropriatecofle for studying the air flow in the
atmosphere was made and successfully tested for a two-giomeh problem.

Memory effects and random walks in reaction-transport systens
Jost Ferreira, P. Oliveira
(University of Coimbra, Portugal)

In this paper we study continuous and discrete models taitbeseaction transport systems with
memory and long range interaction. In these models thepgmahprocess is described by a non
Brownian random walk model and the memory is induced by a mgiitime distribution of the
gamma type. Numerical results illustrating the behavidhefsolution of discrete models are also
included.
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Local conservation and multisymplectic discretizations fo Hamiltonian PDEs
Jason Frank, S. Reich, B. Moore
(CWI, Amsterdam, The Netherlands)

Many Hamiltonian PDEs can be given a space-time multi-Hamidn structure, as proposed by
Bridges [1, 2], among others. The formal structure is

Ju, + Ku, = V,S(u), (1)

whereJ and K are constant, skew-symmetric matrices. Some examples B§Biat can be cast
in this form are classical soliton equations such as thedf@g-de Vries, nonlinear Sainger,
and sine-Gordon equations; Maxwell's equations and ideald]

WhenS(u) is independent of and/orz, Noether’s theorem applied to (1) yields local conservatio
laws of energy and/or momentum. The above formalism giveg aacess to these conservation
laws, as noted by Bridges in [1].

Multisymplectic discretizations for (1) as introduced byidkg 3] are constructed by applying sym-
plectic one-step methods to both space and time derivativessemi-discretizations, Noether’s
theorem still implies retention of local conservation laagsociated with theordiscretized coor-
dinates (i.e. spatial semi-discretizations still possessi-discrete energy conservation laws, etc.)
Furthermore, for Gauss-Legendre space-time discraiizatflinear PDES, where the conserved
densities and fluxes are quadratic, fully discrete energgaentum conservation laws are admit-
ted.

A gquestion that has been asked before in various contextshat is the significance dbcal
conservation for numerical discretizations? Is this mbantjust bookkeeping for conservation
of the global quantity? Although we will not attempt to answhs question, some benefits are
conceivable: local conservation may be useful in caseseayliere to boundary conditions, glo-
bal conservation fails to hold. Furthermore, locally camagve methods allow construction of
conservative schemes on nonuniform grids through a bgttdiock approach.

Recently [4], we have shown that the Gauss-Legendre metbedgles satisfying a local energy
conservation law for linear PDEs, also enforce the comd@ettion of energy flow, through pre-
servation of the sign of group velocity. This is certainlgah local property, and it is a necessary
condition for the avoidance of internally reflected waves3iyspace-time discretizations on non-
uniform grids. Methods with this property are necessariplicit [5].

When S = S(u,z,t) in (1), neither energy nor momentum is conserved. Howe¥ehei de-
pendence on andt is ‘slow’ compared to the active frequency/wave number angblution, the
idea of an adiabatic invariant can be generalized to yietztallconservation law ofave action
related to translation invariance with respect to phasehferphase-averaged system. Numerical
experiments suggest the long time conservation of the aotain [6, 7].
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Multi-level Boundary Meshless Techniques
Csaba Gaspar
(Sz&chenyi Istan University, Department of Mathematics, Hungary)

The method of radial basis functions is an excellent toolsiving interpolation problems as
well as creating meshless methods for various types ofgbalifferential equations. However, it
produces large, dense and often severely ill-conditiolystems of linear equations, which cau-
ses computational difficulties. This remains the case dvarboundary version of the method is
applied. In this talk, the method of radial basis functiongpplied in an indirect way by using
the direct multi-elliptic interpolation method. Here timarpolation function is created by solving
an (at least) fourth order multi-elliptic partial differtgad equation supplied with the interpola-
tion conditions as a special boundary condition. In pragtibis can be performed by applying
guadtree/octtree subdivision and multi-level techniquédsich results in a robust and computa-
tionally stable procedure. However, if the boundary is iiszed by relatively few points, this
approach fails to work correctly, since it produces boupgargularities. To avoid this phenome-
non, the idea of local schemes is applied. Instead of the fusea interpolation based on radial
basis functions, however, global interpolation is usecetam the direct multi-elliptic interpola-
tion method. This procedure results in re-globalized sa®the computational cost of which is
far less than that of the traditional radial basis functippraach. At the same time, the use of
large, dense and ill-conditioned matrices are also avoi@iad technique becomes especially sim-
ple in case of boundary problems, and, in contrast to somaqu® methods, contains no scaling
parameter to be optimized. Numerical examples are alsepieds.

Stable Iterative Operator-Splitting Methods for Stiff-Pro blems of Parabolic Equations: Theory
and Applications

Jurgen Geiser, Istvan Farag

(Humboldt-University, Department of Mathematics, BerlBgrmany)

In this paper we present a modified method of the iterativigtislgl methods, see [1]. We discuss
the consistency and stability analysis for the method aedent the prestepping and weighting
methods, see [2] and [3]. We analyze the local splittingresfdhe method. Numerical examples
are given in order to demonstrate the method.
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A Nonsmooth Newton’s Method for DAE Optimal Control Problems
Matthias Gerdts
(University of Hamburg, Germany)

We investigate a nonsmooth Newton’s method for the numiesaation of Index-2 DAE optimal
control problems subject to mixed control-state constsaifihe necessary conditions are stated in
terms of a local minimum principle. By use of the Fischer-Buste function the local minimum
principle is transformed into an equivalent nonlinear andsmooth equation in appropriate Ba-
nach spaces. This nonlinear and nonsmooth equation istslbjva nonsmooth Newton’s method.
We prove the global convergence and the locally quadratwergence under certain regularity
conditions. The globalized method is based on the mininaraif the squared residual norm.

FE time-stepping using high-order two-step PEER methods
Alf Gerisch, Jens Lang, Helmut Podhaiskyii&iger Weiner
(Martin-Luther-Universiét Halle-Wittenberg, Germany)

Linearly-implicit two-step PEER methods are successfaltylied in the numerical solution of
ordinary differential and differential-algebraic equeais. One of their strengths is that even high-
order methods do not show order reduction in computationstiib problems. With this property,
PEER methods commend themselves as time-stepping scheifiede Element calculations for
time-dependent partial differential equations (PDES).

We have included a class of linearly-implicit two-step PEBBthods in the Finite Element soft-
ware Kardos. There PDEs are solved following the Rothe methedfirst discretised in time,
leading to linear elliptic problems in each stage of the PE&#Rhod. In this talk we describe how
the PEER methods have been adapted to fit into the Finite Eleinaenework, discuss the starting
procedure of the two-step schemes and consider difficultiesh arise in the time-step control.
The implementation is tested for PEER methods of orderettardive on a selection of test pro-
blems.
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The normal spline method for numerical solution of linear sirgular differential and integral
equations

Vladimir Gorbunov , V.Yu. Sviridov

(Ulyanovsk state university, Russia)

The normal spline-collocation (NS) method for linear ODEBES and integral equations [1, 2,
3] are developing for the problem

A®)i(t) + B(t)z(t) — /0 T K@, $)a(s)ds = (1), 0<t< oo,

with boundary conditions:(0) = 2°, z(co) = 0. Herez, f € R", A(t), B(t), K(t,s) are
squaren-order arbitrary degenerate matrices. The functf¢t) and the matrices coefficients are
so smooth as it needs to guarantee appropriate smoothnéessaflutionz(¢) that exists on ass-
umption and belongs to the Hilbert-Sobolev spﬂégl[o, oo) (I is integer) with norm

ol = [Z [ e+ (1) ds] "

Particularly the Laplace transformation’s numerical ns#en, when the image is determined ap-
proximately, is considered.

The NS is based on the construction of the natural systemastiomate function that are generated
by reproducing kernel of the used space and by coefficienteeokquation to be solved. The
problem on the infinite intervab, oo) in frame of the NS can be reformulated on the standard
segment0, 1] via singular time transformation = exp(—t). In this case a simpler polynomial
type norm ini} [0, 1] [2, 3] can be used.

Results of solutions of test problems by different variarithe NS will be presented.

1. V.K. Gorbunov. The method of normal spline-collocatiomnComput. Math. Math. Phys. 1989.
V. 29. No 2. P. 212-224.

2. V.K. Gorbunov, and V.V. Petrischev. Development of thehrod of normal spline collocation
for linear differential equations, in Comput. Math. Math.yBh2003. V. 43. No 8. P. 1161-1170.
3. V.K. Gorbunov, V.V. Petrischev, and V.Y. Sviridov. Despment of the normal spline method
for linear integro-differential equations, in Computatb8cience-ICCS 2003/ P. Slot et al. (Eds.).
LNCS 2658, Springer-Verlag, Berlin, Heidelberg. 2003. P.-492.

Numerical Aspects of Modeling and Control of Inverted Pendulm Using Kalman Filtering,
DAEs, and Energy Based Lyapunov Functions

Hannes Gruschinskj Bradley T Burchett, Richard A Layton, M. Bikdash

(Rose-Hulman Institute of Technology, Terre Haute, IN, USA)

In this paper a continuous-time extended Kalman filter (EWKFprm of a sequential state estima-
tion technique for nonlinear DAEs is applied to a constrdiokass of multibody systems formu-
lated as an index 3 Hessenberg DAE system. The filter eqagisnused to realize a nonlinear
Lyapunov based control law which swings up the inverted pemd. This control law depends on
good estimates of non-measurable states including thehg@n multipliers. Then the pendulum
is stabilized around its unstable equilibrium using linsi@te feedback. Both the inverted pendu-
lum on the cart and on the disc (Furuta pendulum) are treatethis talk we discuss numerical
aspects of solving the state estimation equations formdilas DAEs and implementation of the
control strategy.
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Computational Finance - a source of tasks for numerical analsis

Michael Glunther, Andreas Bartel, Cathrin van Emmerich, Christian Kahl and Kaupe
(Bergische Univers#t Wuppertal, Fachbereich Mathematik und Naturwisseritamal ehrstuhl
fir Angewandte Mathematik / Numerische Analysis, Germany)

In finance application, one often has to compute the - in scgnges- fair price of a financial
derivative. For plain-vanilla options and underlyingsven by the geometric Brownian motion, a
simple closed solution exists: the famous Black-Scholendiba.

To accomplish this task for more realistic market modeld@mnekotic options, one has to combine
modelling with numerical and stochastic analysis tools.vilereview this approach by inspecting
different examples which ask for more sophisticated nucaétechniques: from pricing Bermudan
interest rate derivatives, hedging basket risks in incetepiarkets to simulating numerically
stochastic volatility models.

This work has been partially funded by ABN AMRO London, UK, NRB¥nk Disseldorf and
Sparkasse Leverkusen, both Germany.

A Numerical Model for Diffusion and Reaction in Cells via Homogenization
Michael Hanke, Donald O. Besong, Kristian Dreij, Ralf Morgenstern, Benghdadm
(Royal Institute of Technology, Sweden)

When mammalian cells are exposed to foreign and potentiaiynful compounds a series of
events takes place. Following uptake the substance ishdistd in different intracellular com-
partments by diffusion, absortion and desorption. The nitgjof the compound is either dis-
solved in the ageous phase, the cytoplasm, or in the lipopbiilase, the membranes. Parallel
to diffusion and absorption/dissorption bioactivatiaoftansformation by different soluble and
membrane bound enzymes takes place.

A human cell consists schematically of an outer cellular imeme, a cytoplasm containing a large
number of organelles (mitochondria, endoplasmatic rktmauetc.), a nuclear membrane and fi-
nally the cellular nucleus containing DNA. The organellenmbeanes create a complex and dense
system of membranes or subdomains throughout the cytopld$ra mathematical description
leads to a system of reaction-diffusion equations in a cemngeometrical domain, dominated by
thin membraneous structures with similar physical and ¢b@&improperties. If these structures are
treated as separate subdomains, any model becomes caomltatvery expensive. Moreover,
due to the natural variations in the cell structures, evedyidual cell needs its own mathematial
model. In order to make the system numerically treatabléendtithe same time retaining the es-
sential features of the metabolism under considerationyitdevelop a way of homogenizing the
cytoplasm, aiming at a manageable system of reactionsiliifuequations for the various species.
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Symplectic General Linear Methods
Laura Hewitt , Adrian T. Hill
(University of Bath, United Kingdom)

For many applications, a numerical method for the solutib®@DEs should ideally be algebrai-
cally stable. For general linear methods this is equivateatcertain matrix\/(G) being positive
semi-definite; a complicated criterion to work with whenrsbing for methods.

It is conjectured that non-trivial general linear methoasrot be symplectic, however they may be
G-symplectic; i.e. M (G) = 0. This is simpler to work with thaid/ (G) positive semi-definite and
trivially implies algebraic stability. Using the G-sympte condition in the case = » = 2 and
the order equations, we derive our method in terms of systdraguations. We find diagonally
implicit general linear methods up to and including totalerfour, stage order three.

Algebraically stable general linear methods
Adrian T. Hill
(University of Bath, United Kingdom)

Butcher’'s 1987 BIT paper on nonlinear stability is rich in angy and significant insights into the
structure of general linear methods. We explore some of dnsequences of this extraordinary
but neglected paper. New easily testable criteria for algjelstability are derived, and we discuss
the construction of efficient higher order algebraicalpld¢ methods.

A Krylov subspace splitting method for the time integration of the Maxwell equations
Roébert Horv ath, Istvan Fara@, Mike Botchev
(University of West-Hungary, Hungary)

For the time integration of the Maxwell equations discredizn space with finite differences or
finite elements, we analyze several operator splittingreesevhere some of the split steps can be
done exactly in time, without numerical error. This can bkieeed, for example, by employing
exponential time integration schemes. Presented analydiaumerical experiments illustrate cir-
cumstances under which the proposed scheme appear to beedfi@ent tool for time integration

of the Maxwell equations.

Unified approach to proving qualitative properties of RungeKutta methods with applicati-
ons

Zoltan Horvath

(Sz&chenyi Istan University, Hungary)

In this lecture we consider Runge-Kutta approximations fatems of IVPs for ODESs, which
arise typically from semidiscretization of time dependeBtE problems modeling some physical,
chemical, biological processes, e.g. diffusion, lineat monlinear transport, population dynamics.
The focus is on examining whether the discrete version olitatige properties of the IVP such
as positivity, monotonicity, contractivity, boundednes¥B property were preserved by the RK
approximations. We note that the presence of these prepeastien permits an elegant and po-
werful analysis of the continuous and discrete time proBkldrath. Moreover, in the talk we
shall demonstrate by computational experiments to diffietyge of problems (diffusion-reaction
equations, Euler equations of gas dynamics) that violdtiege qualitative properties may cause
break-down of the code.

In this talk we present a unified formulation of the examiorf different qualitative properties in
terms of dynamical systems with investigating forward maace of or generalized monotonicity
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w.r.t. suitable convex, closed sets. As one of the main resuformulate simple, explicit formulas

for the time step size of the RK discretizations under whiehekamined discrete qualitative pro-
perty is preserved. Finally, we show how these results apptye analysis of long term behaviour
of population dynamics and computational experiments ofesapplied problems as well.

A Reliable Adomian Decomposition Method for Ordinary Differ ential Equations
Mohammad Mahdi Hosseini
(Department of Mathematics, Yazd University, Iran)

In recent years, the studies of initial value problems instbeond order ordinary differential equa-
tions (ODESs) have attracted the attention of many mathemas and physicists. A large amount
of literature developed concerning Adomian decompositi@thod, and the related modification
to investigate various scientific models. Here, it is attetapntroduce a new reliable modification
of Adomian decomposition method. For this reason, a newdifftial operator is proposed which
can be used for singular and nonsingular ODEs. In additiom proposed method is tested for
some examples and the obtained results show the advaniagehis method.

Deterministic models of chemical reactions coupled to stb@astic reaction kinetics for efficient
simulation of cellular systems

Wilhelm Huisinga, A. Alfonsi, E. Cances, G. Turinici, B. Di Ventura
(DFG-Forschungszentrum MATHEON und Freie UnivéisBerlin, Germany)

When analyzing metabolic networks involving large numbénmsolecules, the deterministic mo-
del for chemical reaction systems based on the law of magsndthas been quite successfully
applied in mathematical biology. In the past years, howatéias become evident that in regu-
latory networks, where often some chemical species arepres very low numbers, stochastic
effects play an important role, leading to an increasingtattsastic modelling attempts. When
aiming at a thorough investigation of cellular processeslinng gene-regulatory networks, si-
gnalling pathways and metabolic networks, the questiasearhow to efficiently and accurately
simulate such coupled system.

We present an adaptive and efficient approach for the simaaolaf hybrid stochastic and determi-
nistic reaction systems. Its algorithmic realization abdor adaptive step-size integration of the
deterministic equations while at the same time accuratalirtg the stochastic reaction events.
The mathematical derivation is given and numerical exasmate presented that demonstrate the
power of hybrid simulations.

Numerical Simulation of Streamers
Willem Hundsdorfer
(CWI, The Netherlands)

Streamers are conduction channels that are rapidly formad isolating medium (e.g. air) under
influence of an electric field. When the conducting channeldaes the gap between objects with
different charges, an electric discharge follows (e.dhthing).

The development of streamers can be described by relatsietple models, consisting of
convection-diffusion-reaction equations for the deesitf charged particles, together with a Pois-
son equation for the electric potential. The numerical mtuof these coupled equations is com-
plicated, however, due to (i) the multiscale character efgtoblems and (ii) instability of homo-
geneous states.
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In this talk the numerical issues will be discussed. A loaadl gefinement procedure will be
described, together with simulation results of streamiBngs work is based on joint research with
Carolynne Montijn and Ute Ebert.

Stability of ADI schemes applied to convection-diffusion quations with mixed derivative
terms

Karel in't Hout , Bruno Welfert

(University of Antwerp, Belgium)

In many modern application areas, mathematical models s&d that involve initial-boundary
value problems for convection-diffusion equations in gpalimensions that are greater than one.
The semi-discretization of such equations leads to hugemsgsof stiff ordinary differential equa-
tions that cannot be solved effectively by standard imphomerical methods, and tailored time-
integration methods are required. In the past decadestopsmitting schemes of the alternating
direction implicit (ADI) type have proven to be a successtdl for efficiently dealing with many
of these systems.

In this talk we are interested in multi-dimensional coniettiffusion problems where mixed
spatial derivative terms are present. Convection-difiugimblems of this kind arise naturally in
various areas, such as in financial mathematics where thmseag.g. when pricing options on a
number of correlated assets. The potential use of ADI schdanghe numerical solution of such
problems has not yet been explored to great extent in thatites; some promising first results
were obtained by McKee & Mitchell (1970), Craig & Sneyd (198890) and McKee, Wall &
Wilson (1996).

In this talk we shall consider three general ADI schemesHertime-integration of semi-discrete
multi-dimensional convection-diffusion problems havimixed derivative terms. We investigate
the favourable property of unconditional stability andy@ahat, under appropriate assumptions,
all three ADI schemes share this property when applied etpeoblems. Our results substantially
extend those from the literature mentioned above. Numegiqaeriments are given to illustrate
the presence of unconditional stability as well as showlrgactual convergence behaviour of the
ADI schemes.
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Dynamical low-rank approximation of the chemical master eaqiation
Tobias Jahnke Wilhelm Huisinga
(Freie Universiat Berlin, Germany)

Biochemical reaction systems are traditionally modelledtaynary differential equations (ODES)
representing the concentrations of the substances. Thelleot reaction-rate approach, however,
is inappropriate if some of the substances are present im aumber of molecules and stochastic
fluctuations play an important role for the evolution. Inlsacsituation, a more accurate model is
provided by the chemical master equation, which describegvolution of a probability density
on the state space of all possible vectors of molecule nusnber

The chemical master equation can be considered as a ditedifierential equation, a “discrete
PDE”", or as a system of ODEs. For its numerical treatmentytaia difficulty is the high number
of degrees of freedom. In contrast to the traditional reactate approach which requires only one
ODE persubstancethe chemical master equation consists of one ODEstste Even a rather
small system of three species with molecule numbers valyégeen, say, 0 and 99, contair$?
states, and henc®00000 coupled ODEs have to be solved in order to determine its jmibtya
density! As a consequence, the chemical master equatiarotle treated with standard ODE
methods unless the problem is extremely small.

In this talk we present a dynamical low-rank approximatibthe chemical master equation. The
underlying idea is to approximate the solution on a low-disienal manifold of ansatz functions.
The approximation is propagated according to the DiracHkgkeMcLachlan variational principle
by projecting the derivative onto the tangent space of theifold. Similar techniques are known
in the quantum chemistry community amulticonfiguration time-dependent Hartree methads
have been applied with great success to the solution ot alger equations with many degrees of
freedom. The performance of the method is demonstrated filyiag it to a model problem with
bimodal solution density. Moreover, we discuss advantagdrasvbacks and possible extensions of
the approach.

Explicit parallel two-step peer methods
Stefan JebensRudiger Weiner
(Martin-Luther-Universiét Halle-Wittenberg, Germany)

The construction of explicit-stage parallel two-step peer methods for the solution ofstdf
initial value problems is considered. In each time steplutions are computed as approximations
at the points,,,; := t,, + h,c;, i = 1,...,s. For autonomous scalar equations the methods can be
written in the compact form

Y = BYo1 + hi AF(Yo1).

In every time step the evaluations of the right-hand side can be computed in ghr&lle consider
the construction of methods with optimal zero stability arderp > s. Criterions for good
methods are large stability regions and small error cotstaorresponding parameter sets have
been obtained using the differential evolution genetioatm.

A numerical comparison between peer methods with 6 stages and order= 6 andp = 7in a
sequential implementation and ode45 in MATLAB shows thecigfficy of the peer methods.
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Numerical coupling of electric circuits and semiconductordevices
Ansgar Jungel, Markus Brunk
(Universitat Mainz, Germany)

Numerical simulations of highly integrated electric citsiare necessary in order to replace costly
experiments and to fulfill the demands due to the technoddgiogress in microelectronics. The
high-density circuits show parasitic (for instance, thabneffects which are usually modeled by
equivalent network equations. However, this strategy tmssoquestionable in modern circuits
and the charge transport and thermal effects in the devieed to be described by more precise
models. Thermal effects in semiconductor devices can baezffly modeled on a macroscopic
level by energy-transport equations. These equationsfgpbe electron density, the electric
potential, and the electron temperature in the device. &fbe, improved models are obtained by
coupling the circuit equations and the device models.

In this talk, the numerical coupling of electric circuitsqdeled by standard equations from Kirch-
hoff’s laws) and semiconductor devices (modeled by 1-Dgyrniansport equations) is presented.
Together with the circuit equations, the coupled systenoimes a system of partial-differential-
algebraic equations which are discretized in time by a BDFthote The space discretization
is performed by an exponentially fitted mixed finite-elemerd@thod. Numerical examples of a
high-frequency bipolar diode and a rectifier circuit consgs of four diodes show the impact of
the carrier heating on the semiconductor current.

Deterministic particle methods for high dimensional Fokke-Planck equations
Michael Junk
(Universitat Konstanz, Germany)

In the talk, questions are discussed which arise in the nortgin of Quasi-Monte-Carlo (QMC)
methods for high dimensional Fokker-Planck equations. ¥amele which illustrates the need of
such methods appears in connection with the bead-spring oresentation of polymer mole-
cules, a classical model used in the study of dynamics ofrpefic liquids. The bead-spring chain
typically consists of a large number of beads (e.g. 20) and the state spadeé of its configu-
ration, which is essentially the relative position of aktbonstituent beads, turns out to be high
dimensional (for example, dimension 57 in the case of 20 ¥)eddhe distribution function gover-
ning the configuration of a bead-spring chain undergoingusfiew is a Fokker-Planck equation
onV. Classically, Monte-Carlo (MC) methods are used to solve sigihdimensional problems.
They do not suffer from the curse of dimension but the corereecg order is quite low. In order to
avoid this disadvantage of MC algorithms it is tempting tasider deterministic QMC algorithms
instead because, for a certain class of plain integratiohlpms, they are known to be superior to
the MC approach. It turns out, however, that the mutual iedepnce of pseudo random numbers
plays a decisive role in MC methods for the solutions of phdifferential equations with diffusive
terms. Since QMC methods are based on quasi random numbiets avh typically highly corre-
lated, a direct substitution of pseudo random numbers wiilsgrandom numbers does not work
as in the case of integration problems. Instead, suitalddymt measures have to be constructed
which eventually reduces the efficiency of the QMC approach.
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Adaption of Partitioned Integration Strategies for the Simulation of Mechatronic Systems
Daniel Kanth
(Bosch Rexroth AG, Department of Simulation Technology, Gemm

The simulation of mechatronic systems leads to a set ofrdifteal or differential-algebraic equa-
tions with heterogeneous structure. Due to large diffezemt eigenvalues these systems are often
stiff. Using a single integrator for the numerical time integnatf stiff systems the step size has to
be reduced radically to meet accuracy requirements. Astamative approach the system can be
divided into so called fast and slow subsystems. For eacsystdm a specialized time integration
methods is used. This approach is cafpedtitioned integration

This paper describes the concept of partitioned integratial emphasizes the advantages of this
approach compared to non-partitioned integration. Fdrghgpose two characteristic parameters
are derived which represent stiffness and coupling of tiséesy. As a first step so calletemen-
tary systemsre introduced, which represent the smallest decomposaiitie of a system. If a
system has fastnd slow elementary systems it is said to be stiff. The speed elementary sys-
tem is described by the product of a predicted step/sjzg and the norm of the Jacobian matrix.
Additionally the numerical effort for the time integratiéor each elementary system is calculated
with ﬁ The coupling of elementary systems is determined by thsitsaty of states. Hence
all elementary systems are successively perturbed an@shiéing effects in states are measured,
after an explicit euler step with,,.; was performed. The sensitivity leads to an estimation of the
expectable coupling step siZé. The expectable numerical effort for automatic couplirepsize
control and the exchange of coupling data can be estimatidAvi The expectable numerical ef-
fort of time integration and coupling data exchange leadbealetermination whether partitioned
integration is superior to non-partitioned integratiomot.

By estimating the total numerical effort it is not only podsibo determine one or more suitable
integration methods but also to determine an optimal geaitylfor the time integration. Further-
more it is described how efficiency can be improved by usingwgomatic control of the coupling
step size. The functionality is proved by numerical resolts mechatronic system simulation.

Numerical solution of stiff ODEs modelling chemical kinetics
Oleksiy Klymenko, I.B. Svir
(Kharkov National University of Radioelectronics, Ukrgine

Homogeneous chemical processes are described by systeandimdry differential equations
which are often stiff due to greatly differing rates of indival reactions. Special care should be
taken during the numerical solution of such systems becaifubeir nonlinearity and the require-
ment of positivity of the solution. The violation of the latteven within the prescribed tolerance in
many cases leads to divergence of the numerical solutiahidnvork we solve stiff ODE systems
describing complex chemical processes using two novel naalenethods the Almost Runge-
Kutta method (Butcher J.C., Rattenbury N. AImost Runge-Kuttthows for stiff problems. Appl.
Num. Math. 53 (2004)165-181) and the method by Aluffi-Pardimd co-authors (Aluffi-Pentini
N., De Fonzo V., Parisi V. A novel algorithm for the numerigategration of system of ordinary
differential equations arising in chemical problems. JttM&hem. 33 (2003) 1-15) based on the
exact solution of linearised ODEs. The performance andl#yaproperties of the two methods
are compared.
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Implementation of Rosenbrock methods for compressible atmspheric models
Oswald Knoth
(Institute for Tropospspheric Research, Germany)

A new dynamical core for compressible atmospheric modeistieduced and evaluated with a
suite of standard test cases. The equations are discr@tizpace in a cartesian or longitudinal-
latitudinal grid with height as the z-coordinate. Orognapimd other obstacles are incorporated
by the cut cell approach. In time the spatially discretizqdagions are integrated by Rosenbrock
methods with special chosen approximate Jacobian matrid@s type of approximation allows
to split the solution of the linear system in two separatespfide first linear system is of the
advection-diffusion type and the second one is a positifi@itke Helmholtz system. Both systems
are solved by special iterative methods of conjugate gnadype with suitable preconditioning.
Rosenbrock methods are linearly implicit time integratioatihods and fall in the class of the
different proposed semi implicit methods found in the btere. Therefore the time step is not
restricted by sound and gravity waves. The numerical meth@édrallelized by nonoverlapping
domain decomposition and allows different spatial resotutn different domains. Test cases
include warm and cold air bubbles, flow over hills of Agnegié¢yand flow around buildings.

An Integrated Design Procedure for Design of Smart Structues
Alexander A. Kolpakov
(The Novosibirsk State University, Russia)

In [1] the problem of integrated design of "smart” structireas formulated and investigated for
the simple system described by ordinary differential eiguatThe recent analysis of the problem
leads to some conclusions of general value on the structahe dintelligence” [2, 3].

In the present paper, in addition to the results [1-3], newsblam of design of smart frameworks
(the system described by a system of algebraic equatiopsg¢sented.

References

1. A.A Kolpakov (2003) Analysis and design problem for "sthatructures.10th Seminar NUM-
DIFF. Programme and Abstrac30.

2. A.A Kolpakov and A.G.Kolpakov (2006) Design of smart beaan integrated design procedure
Structural and Multidisciplinary OptimizatiorV.31, N13.
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nics 2006, Munich, Germany (accepted)

The Network Models and Asymptotic of Capacity of a System of Clsely-Placed Bodies
Alexander G. Kolpakov
(NGASU, Russia)

In [1, 2] it was demonstrated that boundary value problem domain filled with perfectly con-
ducting disks can be approximated with a network model (geay®f Kirchhoff type equations).
The technique presented in [1, 2] can be used in 2-D case awcddalar disks only.

In the paper a newly elaborated technique [3] of network exipration for boundary value pro-
blem in a domain filled with perfectly conducting subdomaspresented. It relates the network
approximation to capacity of the perfectly conducting subdins and can be used to analyze
problems of arbitrary dimension (the problem demonstrai28D dimension sensetivity) and for
subdomains of arbitrary shape.

The mathematical results are applied to analysis of tramgpoperties of dense-packed high-
contrast composites [5].
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Linear Multistep methods for quasi-singular perturbed problems
Felix Kramer
(Vienna University of Technology, Austria)

Stiff behavior occurs in a variety of ODE systems relevarapplications. The notion of stiffness
is a phenomenological one, and a stability and error arstfsiumerical methods has been based
either on simple models or particular problem structuragdirticular, stiff initial value problems

in standard singular perturbation form are well understétalvever, problems of this type exhibit
a very simple phase space geometry, namely the stiff eigeetdins also behawiff in another
sense, i.e., they are almost parallel. This motivates usrisider a more general nonlinear class of
stiff ODE systems depending on a small parameter. In pdaticwe investigate the convergence
properties of BDF methods applied to problems of this typel larear multistep schemes will
further be investigated.

Finite Pointset Method (FPM): Meshfree Flow Solver in Continuum Mechanics
Jorg Kuhnert
(Fraunhofer Institut Techno- und Wirtschaftsmathemagi&rmany)

FPM is a young CFD tool, developed in the Fraunhofer Institoteéndustrial Mathematics, Kai-
serslautern. It is a meshfree approach, mainly designeeeit@ome several drawbacks of classical
CFD methods. FPM evolved originally from classical SPH, havét developed towards a gene-
ral finite difference scheme operating on non-structuradtmdouds. It is a Lagrangian idea, i.e.
the point cloud moves with local fluid velocity. Each pointroas relevant information and has to
be integrated in time.

We model the incompressible Navier-Stokes equations. tteremploy Chorin’s projection idea
in order to maintain the incompressible character of the.flextension of this idea even leads
to more freedom, such that compressible flows can be compstell. The integration method is
implicit in time. That relaxes the CFL-condition (i.e. upfeEund for the time step size), however
it requires the construction and solution of big, sparsedirsystems of equations.

The biggest advantage of FPM is its easy handling of freeasasf and multiphase flows. No
additional algorithms have to be employed in order to moas surfaces, as the point cloud itself
describes the topology of the free boundaries. The poiltsgang to a free surface or an interface
have to be detected and maintained at each time step.

Another advantage of FPM is its easy handling of flow problevita moving boundaries and
complicated geometries. The point cloud perfectly orgasitself through the point movement.
FPM has successfully been employed in various industrigjepts, most recently for applicati-
ons in glass industry. Here, stirring, floating, shrinkinglaolling processes are designed and
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optimized using FPM. In car industry, FPM is applied for siation of tank filling and sloshing
processes. The most recent idea is to use FPM for cuttingpses. Here, of course, the modeling
has to be extended to visco-plastic material behavior.

Criticism of Asymptotic Global Error Expansion with a New Extra polation Theory
Gennady Kulikov
(University of the Witwatersrand, Johannesburg, Southcajr

In this paper we discuss existence of the asymptotic glabait expansion for numerical solutions
obtained from general one-step methods applied to ordufifferential equations. The asymptotic
global error expansion was discovered independently byitieragg and Stetter in 1962, 1964
and 1965, respectively. It is an important theoretical lgacknd for extrapolation methods. We
draw attention to some flaws in that theory and show that sm@xpansion is likely to fail to work
in practice. Therefore we give another substantiation xtra@olation methods. The Richardson
extrapolation technique is a key means to explain how eatagipn methods perform. Additio-
nally, we prove that the Aitken-Neville algorithm works fany one-step method of an arbitrary
order s under suitable smoothness.

Tractability Index = Strangeness Index +1
René Lamour, Roswitha Marz
(Humboldt-University of Berlin, Germany)

Once upon a time scientists from various fields tried to selyeations whose essential part con-
sisted of an ODE. There were only a few additional algebraitstraints that would not perturb
the power and accuracy of the known robust numerical ODEisolmethods. That was the hope
- but the hope was dashed. This happened in the late sixttee d¢dst century.

With the observed problems like singularities, drift off, 1 divergence every research group star-
ted to discover the reasons for such a behavior. They fouad itih contrast to classical ODEs,
we have to differentiate parts of the right-hand side of suslistem oflifferential plusalgebraic
equations (DAE) to compute a solution. The quantity of hovenfyou have to differentiate was
called the index and it describes the difficulty to solve a DAE

Every scientist has naturally used her/his scientific bemkgd in her/his investigations and, the-
refore, we have various schools and theories about DAEs. aW¥e tihe geometric, perturbation,
structural, differentiation, strangeness, tractabbity also the classical Kronecker index.

We have to compare these different concepts. The easiesthmndd be the transformation of
the (linear) DAE using the different concepts into a canahfiorm, but these canonical forms are
different.

We will focus on a comparison of the tractability and strarggs index for regular DAESs.

The solution of singular Schiddinger problems using a piecewise perturbation method
Veerle Ledoux M. Van Daele and G. Vanden Berghe
(Ghent University, Belgium)

The piecewise perturbation methods (or PPM in short) weeeiafly devised and shown to be
very efficient for the solution of regular Sd@dinger problems

y'(z) = (V(z) — E)y(z) (1)
defined on a finite integration interval € [a,b]. However many practical problems are defined
on an infinite integration interval, i.e. = —oo or b = +oo. We discuss an improved truncation
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algorithm based on the WKB-approximation which automatycaétlects good truncation points
for a certaink-value. These truncation points are chosen large enoudjitisatthe solution in this
points may be assumed to be zero. However, for the importass of potentials which behave
like a Coulomb potential in the asymptotic region, the trdiocaalgorithm can be improved taking
into account the asymptotic form of the Coulomb equation. éMarecise (truncated) boundary
conditions can then be constructed and this allows us togede smaller cutoff values.

For these Coulomb-like problems another specific problenurscahe potential is singular near
the origin. To deal with this singularity a specially tunestjoirbation algorithm is used in a short
interval around the origin.

Fast Runge-Kutta approximation of inhomogeneous paraboti equations
Mar ia Lopez-Ferrandez Christian Lubich, @sar Palencia, and Achim Saille
(University of Valladolid, Spain)

The result aftefV steps of an implicit Runge-Kutta time discretization of amamogeneous linear
parabolic differential equation is computed, up to accyeady solving only

O(logN log é)

linear systems of equations. The algorithm is based on aapsliscretization of the Cauchy
integral representation of the Runge-Kutta approximatidfe derive, analyse, and numerically
illustrate this fast algorithm.

Dynamical low-rank approximation
Christian Lubich , O. Koch and A. Nonnenmacher
(Univ. Tubingen, Germany)

For the low rank approximation of time-dependent data roesrand of solutions to matrix diffe-
rential equations, an increment-based computationaloggpris proposed and analyzed. In this
method, the derivative is projected onto the tangent spkiteeananifold of rankr matrices at the
current approximation. With an appropriate decompositbrank+ matrices and their tangent
matrices, this yields nonlinear differential equatiorettire well-suited for numerical integration.
The error analysis compares the result with the pointwiss# approximation in the Frobenius
norm. It is shown that the approach gives locally quasirogtilow rank approximations. Further
error bounds show the robustness of the approach with respte choice of the approximation
rank. Numerical experiments with moving images, time-aeleat term-document matrices and
reaction-diffusion equations illustrate the method aredttieoretical results.

Solving Partial Differential-Algebraic Equations in Structural Mechanics: Applications and
Enhanced Treatment by Adaptive Mesh Refinement

Christoph Lunk , Bernd Simeon

(Technical University of Munich, Germany)

Computational mechanics and its various applications hgpergenced a significant development
over the last decade. From the numerical analysis pointef,wve deal with physical laws of
subsystems, e.g. deformable bodies, described by Paitiatéhtial Equations (PDE), which are
coupled by physical constraints. Their discretizationd #re treatment of constraints are one of
the key issues in this problem class. In particular the dogpdf time-dependent problems leads
to systems of Partial Differential-Algebraic Equation®&ES).
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In my talk | present a time integrator for this problem clagkich combines the plausible scheme
of the RATTLE algorithm with the benefit of variable numeridédsipation by the Generalized-
methods. Some key ideas on the convergence proof will bengi#er the discretization of the
time-depending PDE"s and their algebraic constraints, $bheme is applied to the method of
lines and its reversed counterpart. The latter allows udaptthe spacial mesh at each time
integration step, where the step size is also variable. Tladlenge is the dynamic behavior of
entries in the derived saddle point problems. | discuss saspects on constraint formulations
and projection techniques due to the sensitive influencebigation.

At the end | give some examples of systems of rigid and defblenlbodies (flexible multibody
systems). The simulation of pantograph with catenary dycsdemonstrates the potential of our
approach. An outlook on further investigations closes tlesgntation.

The parametrization method for numerical solution of singular differential equations
l.V. Lutoshkin , V.K. Gorbunov
(Ulyanovsk state university, Russia)

The problem to be solved numerically is the initial one forirplicit ordinary differential equa-
tion F(i,2) =0, 0<t<T, =z(0) =2 wherexz € R"andF : R* — R", smooth
transformation, in the case of arbitrary degeneracy of #teldi matrixoF (z(t), z(t)) /0t on the
solutionz(t). The important particular case is the structured systemAdD

with conditionsz(0) = z°,  u(0)) = «°.

The PM is based on the minimization of discrepancy of appatpdifferential system and appro-
ximation of "control function”u(t) (in the first case.(t) = 2(t)) by splines with moving knots.
The first and second derivatives of the discrepancy funation the spline’s parameters can be
effectively calculated with help of variational techniguend adjoint variables. The corresponding
experience is presented in [1, 2]. Here we present also desitgzhniques for direct approxima-
tion of all components of the solution. Comparative anafjtamd numerical analysis of different
variants of the PM will be presented.

1. V.K. Gorbunov and I.V. Lutoshkin Development and expec&of applying the parametrization
method in degenerate problems of dynamical optimizatioizy. RAN: Teor. Syst. Upravl. 2004.
No.5. P. 67-84.

2. V.K. Gorbunov and I.V. Lutoshkin The parametrization hoet in optimal control problems and
differential-algebraic equations, in J. Comput. Appl. Mgtlsevier). 2006. Vol.185. P.377-390.

Which ETD method?
Paul Matthews, Hala Ashi
(University of Nottingham, UK)

Exponential time differencing (ETD) methods were origipgroposed by Certaine for nonlinear
systems with a stiff linear term, and have been re-inventadynimes since. They generally
perform better than the more well-known integrating fach@thods (which have larger error con-
stants) and linearly implicit methods (which do not hantikelinear term correctly). | will discuss

the circumstances under which this generalisation holtierd are many different types of ETD
method, and this talk will address their merits in terms auaacy, stability and ease of use.
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Convergence analysis of thin-plate spline interpolation
Jens Markus Melenk, Armin Iske and Maike Loehndorf
(TU Wien, Austria)

Radial basis functions provide a versatile tool for scattetata interpolation. One of the basic
questions is the interpolation problem: Givdrdata pointr; € R?,i = 1, ..., N, with correspon-
ding valuesf;, find the function/ f of the form

If(z)= Zciqb(]m —x;|) + 7(z)

such that/ f(x;) = f;fori = 1,..., N. One possible choice of the functignis that of polyhar-
monic splines, i.e., the function — ¢(|z|) is the fundamental solution of the iterated Laplacian
A™. The functionr is a polynomial of degree» — 1. In the casel = 2 = m, the function
¢(r) = r?logr is called the thin-plate spline.

Existence, uniqueness, and optimal rates of convergenga#si-uniformly distributed data points
x; were established in fundamental papers by Duchon and Mein@onvergence here means that
the interpolation datg; = f(z;) originate from a functiory € H™(2) and the errorf — I f is
considered. We extend this classical theory to functipms H*(2) with k > m. Specifically, we
show that optimal convergence rates can be obtainefl foi7*(2) in the range: € [m, m+1/2).
Boundary effects limit the achievable convergence in themweg > m + 1/2; however, we show
how further improvements in the convergence rate can bergutdy condensing data points
near the boundary. Numerical examples corroborate thedheal assertions.

Computing Eigenfunctions of Singular Points in Nonlinear Paametrized Two-Point BVPs
Thomas Milde
(Friedrich-Schiller-Universét Jena, Germany)

The iterative computation of singular points in parametlinonlinear BVPs by so-called extended
systems requires good starting values for the singulat iegif and the accociated eigenfunction.
Using path-following techniques such starting values far $ingular points are generated auto-
matically. However, path-following doesn’t provide apypiroations for the eigenfunctions. We
propose a new modification of this standard technique déligesuch starting values. It is based
on an extended system wich can be used for nonsingular assveithgular points.

Adaptivity in mechanical integrators
Klas Modin, Claus Fihrer and Gustaf@&lerlind
(SKF Engineering Research Centre and Lund University, Sweden

Mechanical integrators are numerical integration mettspegifically designed for evolution equa-
tions originating from mechanical systems. Typically, digcrete flow introduced by a mechanical
integrator share structural properties with the corredpanexact continuous flow, which makes
its long time behavior superior to conventional numeringdgrators. Examples of structure preser-
ving properties are: reversibility; conservation of momtuem maps; conservation of the symplectic
form; conservation of energy. A result by Ge and Marsden &) 88serts that if a symplectic dis-
crete flow exactly conserves energy and momemtum, therasgivfact the exact solution. Hence,
two main branches of mechanical integrators have evolwathpkectic-momentum and energy—
momentum conserving. Nevertheless it has been shown yeaiker, Lubich and Wanner (2002),
that symplectic-momentum methods acquire near consemvatifirst integrals such as energy.
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For evolution equations with alternating dynamics it issslaally more efficient to use adaptive
numerical integrators with, e.g., varying time-step andfder of accuracy. The design of adaptive
mechanical integrators is non-trivial, since conventi@uaptive techniques tend to destroy inher-
ent structural properties. In particular, standard agtefttme-step selection in conjunction with
symplectic-momentum methods do not maintain near consenvaf first integrals. During the
last decade other adaptive time-step techniques, basgthamit time transformations, have been
developed. These techniques allow the construction ocdbbritime-step mechanical integrators.
In this talk further developments and generalizations @psile mechanical integrators are pre-
sented. More specifically, we show how the framework of wemieal integrators originating from
discrete mechanics — a discrete counterpart to Lagrangechamics — can be extended to in-
clude integrators with general adaptive objectives. A keinpof ours is to analyze adaptivity
from a control theoretic point of view, where the input vaies of the control system is given by
discretization parameters, e.g. the time-step length tl@adutput variables by local state space
measurements, e.g. the local integration error. The ardab@vity then amounts to the design of
suitable feedback laws.

Fractional step Runge-Kutta-Nystrom methods for evolution problems of second-order in
time

Maria Jesus Moreta, Blanca Bujanda, Juan Carlos Jorge

(Universidad Rblica de Navarra, Spain)

As it is well-known, because of their computational advgeta Fractional Step methods are wi-
dely used in practice for solving evolutionary problems dftforder in time. The application of
these methods has been extended to classical second otide problems like the wave equation.
Following the main advantages of these methods, we havéagmeea new class of methods, cal-
led Fractional Step Runge-Kutta-Ny&tin methods (FSRKN), to solve numerically second-order
in time evolutionary problems. As in the case of using Foal Step Runge-Kutta, the main
goal consists of reducing the computational cost of classmsplicit methods for solving multi-
dimensional problems of this type. In order to get this, westigplit firstly the space differential
operator as a sum of simpler operators in a certain senser éding this, we integrate in time
using a FSRKN method subordinated to such splitting. In trag,wnly a piece of the splitting
acts implicitly at each fractional step.

In this talk the main properties of these methods are shoswvedl as the construction of a family
of third-order unconditionally stable methods of this sla&inally, we present some numerical
results confirming their advantages.

On Multivariate Chebyshev Polynomials; from Group Theory to Numerical Analysis
Hans Z. Munthe-Kaas
(University of Bergen, Norway)

Classical 1-D (univariate) Chebyshev polynomials are ulboasiin numerical analysis with app-
lications ranging from approximation theory to spectrabdetizations of PDES, signal processing
and numerical linear algebra. Chebyshev polynomials haaeogimal approximation properties
and enjoy fast expansions via the FFT.

The need for extending the beautiful properties of 1-D Chiebygolynomials to several dimen-
sions is usually accomplished by considering tensor prisdut separable (box-shaped) domains.
Box-shaped domains are unfortunately not well suited fochpag together in domain decompo-
sition and spectral element discretizations of PDEs. Tieeeneed for developing polynomial
approximation theory on triangles and higher dimensicsiahhedra.
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Multivariate families of Chebyshev polynomials can, howeaéso be constructed on certain non-
separable domains. By applying the theory of Kaleidoscomimmgroups (or affine Weyl groups)
acting onR", one obtains families of Chebyshev polynomials living on doma related to triangles
and tetrahedra. These were first considered by Koornwimd&®74. There is a limited literature
on the properties of these non-separable multivariate Ginlwypolynomials. However, applica-
tions in numerical analysis seem to be absent, and thesagnlgls are almost unknown in the
numerical analysis community.

In this talk we will give an overview of the theory of multivate Chebyshev polynomials and
show how these share the beautiful properties of their ulaiteacousins, such as near-optimal
Lebesgue constants for the interpolation error and theéesds of fast transforms for expansions
and (pseudo)-spectral differentiation. The goal of thieiato show that these yield powerful tools
that should be available in the toolbox of numerical analgsid scientific computing.

Finally, we will briefly mention some fast symmetry based@xgntial- and Lie group time inte-
grators obtained from triangle based spectral elementeatizations of PDEs.

Numerical integration of the extended plasma fluid equatios with SD3 Kurganov-Levy
Scheme

Richard Naidoo

(Durban Institute of Technology, South Africa)

The plasma two fluid equations were extended to include tbeggrequations. We then numeri-
cally integrate the new set of conservative equations bynsieéa recently modified third order
semi-discrete scheme for hyperbolic systems due to Kukgand Levy [SIAM J.Sci.Comp. 22,

pl1467, 2000]. We illustrate the formation of solitons andchwaves.

On the convergence of the Magnus series
Jitse Niesen Per Christian Moan
(La Trobe University, Melbourne, Australia)

The solution of a linear nonautonomous differential equratian be given in terms of an infinite
series called théagnus series Specifically, the solution of the equatioh = A(t)y can be
written asy(t) = exp(€2(t)) y(0) where exp denotes the matrix exponential &d) is given as an
infinite series. The Magnus series can be used to design maherethods for equations of this
form.

In this talk, we discuss the convergence of the infinite seoe2(¢). We mention the connection
between the convergence of the infinite series and the ogenee of the numerical method. Our
main result is that the series convergeﬁfiﬂA(s)H dt < 7. The constant is sharp.
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A collocation method for solving nonlinear differential equations via hybrid of rationalized
Haar functions

Yadollah Ordokhani, Bahman Arabzadeh

(Department of Mathematics,Alzahra University, Iran)

Hybrid of rationalized Haar functions are developed to agpnate the solution of the nonlinear
differential equations.The properties of hybrid funcsomhich are the combinations of block-
pulse functions and rationalized Haar functions are firssented. These properties together with
the Newton-Cotes nodes are then utilized to reduce the éiffe equations to the solution of
algebraic equations.The method is computationally at#@end applications are demonstrated
through illustrative examples.

Recent developments in exponential integrators
Alexander Ostermann
(Universiét Innsbruck, Austria)

Exponential integrators were first proposed in the 19604Hernumerical solution of stiff dif-
ferential equations. They later turned out to be efficiemtpimblems where the solution of the
linearisation contains fast decaying or highly oscillgtoomponents. In spite of the favourable
properties of exponential integrators, there are still (wny) variable stepsize implementations
available in the community.

For higher-order explicit exponential Runge—Kutta methadgirned out to be difficult to con-
struct reliable and efficient error estimates. Moreovergontrast to classical time integrators,
exponential methods aret invariantunder linearisation. This results in an error behaviouii-sim
lar to classical W-methods. Therefore, we have to expegelarrors whenever the linear part is
not well chosen.

In my talk, | will address these problems. Further, | will diss alternative approaches for a
possible implementation.

On some conservation properties of symmetric methods ap@d to Hamiltonian systems
Brigida Pace, Felice lavernaro, Donato Trigiante
(Dipartimento di Matematica, Univeraiti Bari, ITALY)

The use of symmetric schemes has revealed interestindjtstabbperties for the long time simu-
lation of conservative, and in particular Hamiltonian gyss. Although in general these methods
fail to preserve the energy function and/or the sympldgtiproperty proper of the continuous
(Hamiltonian) problem, in many interesting situationsgtthowever display a behavior which is
qualitatively close to both symplectic and energy presgywnethods. We use a new approach
based upon the definitions discrete line integrabndstate dependent symplecticityspecify the
terms of such closeness.

A numerical solution of conjugate problem of forest fire initiation
Valeriy Perminov
(Belovo Branch of Kemerovo State University, Russia)

A mathematical model for the description of heat and masstea processes at crown forest fire
initiation and spread has been designed. Turbulent heamnasd transfer in the forest crown, as
well as heat and mass exchange between the near-groundiagerosphere and the forest canopy
are incorporated in a so-called conjugate formulation. [&tter manages to take into consideration
the mutual effects of the forest canopy and the atmosphenegiiorest fires the most accurately.
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Based on the model of forest fires, the problems of crown fdrestinitiation and spread are
studied with due consideration for the effect of a turbukmiosphere and the actual structure of
the forest biogeocenosis. The boundary value problem wasdaumerically using the method
of splitting according to physical processes. A discretal@mn for the system of equations was
obtained by means of the control volume method. These sesiulesearch provide the foundation
for current mathematical forest fire theory, and will be matl in detail in subsequent models of
this paper.

Sensitivity analysis of discontinuous multidisciplinarymodels
Andreas Pfeiffer
(German Aerospace Center (DLR) Oberpfaffenhofen, Germany)

Multidisciplinary modelling and simulation play an impanit role in design and analysis of me-
chatronic integrated systems. Within this subject the abjeiented modelling language Mode-
lica supports automatic model generation for efficient teimeulation of DAE-systems in complex
technical applications.

Detailed model-based investigations demand not only topeaenthe solution of model equations
but also sensitivites (derivatives) with respect to modebgmeters. A general numerical approach
relies on the simultaneous integration of the nominal sysad the sensitivity differential equa-
tions. This approach can be extended to hybrid systems wgttotinuities in right-hand sides
and states. Furthermore, problems will be addressed th&ists remain in crossing function
manifolds (Filippov solutions). For the investigated syss it will be discussed, if and under
which conditions the parameter sensitivities exist. Theatcal computation of sensitivities by
automatically generated Modelica models with higher caxip} will be introduced, too.

An important application of sensitivity computation is tidentification of unknown model para-
meters in physical systems by optimisiation algorithmsst kacal convergence of gradient based
algorithms (e.g. SQP) will only be possible if the gradiemformation is sufficiently accurate.
In general, finite differences (external differentiatidrgrdly reach this accuracy. The results of
SQP-optimisation in combination with sensitivity comgida will be demonstrated by a complex
six-axis robot model.

Numerical treatment of integro-PDEs for Phytoplankton dynamics
Nguyet Nga Pham Thj B. P. Sommeijer, J. Huisman
(CWI, The Netherlands)

Modelling the dynamics of phytoplankton is of great impada to many aspects of human in-
terest, since phytoplankton provides the basis of the fdwincin lakes, seas and oceans. A
particularly interesting aspect is the ability of sinkingypoplankton species to take G0, from
the atmosphere, resulting in a downward export of carbohedbttom of the ocean (the so-called
‘biological pump’). By this mechanism, several gigatons year of carbon dioxide are removed
from the atmosphere, thus making a significant contributeothe reduction of the greenhouse
problem on earth.

Phytoplankton requires light for photosynthesis. As alteghie production rate, which is deter-
mined by the local light intensity, decreases with deptle uabsorption. Furthermore, mortality
rates and transport by turbulent diffusion in a water colymixing) play a role. Also, phyto-
plankton species often have a specific weight different ftbat of water, giving rise to vertical
transport in the form of sinking or buoyancy. Taking all thggsocesses into account, leads to an
integro-partial differential equation of advection-dgion-reaction type.
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Usually, light availability is the major factor limiting ptoplankton growth. In some regions,
however, phytoplankton growth is limited by the availdlilof nutrients, such as nitrogen, iron,
and phosphoros. We will consider a model in whimdth limiting factors, light and nutrientare
taken into account. These two factors give rise to contrggjradients since light is coming from
above, whereas nutrients are supplied at the sediment. Asudt,rthe vertical distribution of
the phytoplankton population can be quite heterogeneotlsisense that a large aggregation of
phytoplankton is formed at a subsurface depth, where bglit &nd nutrient are just sufficiently
available to sustain a population. In a certain part of patamspace, it turns out that the biomass
(as a function of time) shows an oscillatory behaviour. Sprfatrient limitation of phytoplankton

is thought to lead to a stable equilibrium without oscithas.

The above aspect will be illustrated and the underlying rdigms in the numerical simulations
will be discussed.

Construction and implementation of peer methods
Helmut Podhaisky, Rudiger Weiner
(University Halle, Germany)

General linear methods can have favorable properties riicpkr the unique combination of
o A-stability,
¢ high stage order, and
e adiagonally implicit scheme

is possible. However, it seems to be difficult to constructhods which behave robustly enough
in a variable stepsize implementation to supersede Rung&tnd multistep methods in real
applications.
The idea behind a peer methods is to pass all stage values y(t,, + c¢;h),i = 1,...,s from
step to step, leading to

Y = RAf(Y,) + BY,, 1

with a ‘diagonally implicit’ matrixA. The order conditions can easily be satisfied by interpaati
and perfect stability at infinity is also automatically galsteed. The main difficulty is to use the
remaining degrees of freedom to find A-stable and ‘nice’ mé#h We will discuss the construction
of peer methods and techniques of local error estimatioa f@riable order implementation.

Wavelet-based Adaptive Grids for Solving Multirate Partial Differential-Algebraic Equati-
ons

Roland Pulch, Stephanie Knorr

(Bergische Universit Wuppertal, Germany)

In radio frequency (RF) applications, electric circuitsguwoe oscillatory signals with largely diffe-
ring time scales. Thus a transient integration of the dgifdial-algebraic equations (DAES), which
describe the circuit, becomes inefficient. Alternativalynultidimensional signal model yields a
system of multirate partial differential-algebraic eqoas (MPDAES). A method of characteri-
stics is feasible to solve multiperiodic boundary valueleas of the MPDAESs. This technique
enables an efficient numerical simulation, if a relativebacse grid can be used in time domain.
In case of digital signal structures, steep gradients aodisnuities may arise near specific time
points. In this contribution, we present a technique basedavelets to construct an adaptive grid
in time domain. Consequently, the method of characteristigaires a low number of grid points
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in comparison to uniform grids, which achieves the efficieatthe multidimensional approach.
Numerical simulations corresponding to benchmark ciscdémonstrate the performance of this
adaptive construction and the resulting RF signals.

High Resolution Finite Volume Schemes for Solving Populatin Balance Models
Shamsul Qamar, Gerald Warnecke
(Institute for Analysis and Numerics, Otto-von-Guerickeiérsity, Magdeburg, Germany)

Physical modeling of particulate processes has been thecsuds intense research over the last
half century. It is a fertile area for research and of gregitartance in a wide range of industries
from pharmaceuticals to minerals, food and petrochemical&rious phenomena involving
particle processing are still unclear and a good knowledgie» mechanisms of size changes
which occur in particulate processes is useful in produgeldpment, waste minimization and
quality control.

The mathematical description of the change in particletiies during process such as granula-
tion, crystallization etc. is referred to us as populatialabce equations. The population balance
equation (PBE) is considered to be a statement of continuitlyiatrack the change in particle
size distribution as particle are born, die, grow or leawe ¢bntrol volume. The entities in the
population density can be crystals, droplets, moleculdts,@and so on.

We focus on the numerical solution of multi-dimensional plagion balance equations by using
semidiscrete high resolution finite volume schemes. Thé&fwolume schemes were originally
derived for compressible fluid dynamics. The schemes afeedefor general purpose and hence
can be applied to any model of hyperbolic type. In this stu@gyoemncentrate on the population
balance models for crystallizatin and aggregation praesSeveral one and two-dimensional nu-
merical test problems are considered here. The numermaltseare validated against the available
analytical solutions and experimental results of our dmtating research group. These numerical
simulations prove the versatility, generality and effestiess of the finite volume schemes.

Numerical solution of a dynamic model for dual methanol reator
Mohammad Reza Rahimpour
(Shiraz University, Iran)

The present work investigates numerical solution of a datdlgst bed model for industrial me-
thanol synthesis. A system with two catalyst beds insteazhefsingle catalyst bed is developed
for methanol synthesis. In the first catalyst bed, the sygithgas is partly converted to methanol in
a conventional water-cooled Lurgi type reactor. This beerafes at higher than normal operating
temperature and at high yield. In the second bed, the realgat is used to preheat the feed gas
to the first bed. The continuously reduced temperature sidbd provides increasing thermody-
namic equilibrium potential. In this bed, the reaction natenuch lower and, consequently, so is
the amount of the reaction heat. This feature results inenilemperature profiles in the second
bed because less heat is liberated compared to the first élis lway the catalysts are exposed
to less extreme temperatures and, catalyst deactivateosiniering is circumvented. This system
results in outstanding technical features due to the exdtefavorable temperature profiles over
the catalyst beds. In this work, a one-dimensional quasiest plug flow model is used to analyze
and compare the performance of dual bed and conventiorgiédied reactors. The results of this
work show that the dual catalyst bed system can be operatbdhwgher conversion and longer
catalyst life time.
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Efficient Stochastic Runge-Kutta Methods for the Weak Approximation of the Solution of
SDEs

Andreas Roller, Kristian Debrabant

(TU Darmstadt, Germany)

Stochastic Runge-Kutta (SRK) methods up to order two for thekvegproximation of both, @
and Stratonovich stochastic differential equations (SPRave been proposed in recent years.
However, if these SRK methods are applied to SDE systems Heenumber of stages depends
linearly on the dimension of the driving Wiener process. sTigia significant drawback for the
application of such methods in many applications like matigcal finance. In the present talk, a
new class of second order SRK methods is presented whichamercthis drawback, i.e. where
the number of stages is independent of the dimension of th@giener process. Order conditi-
ons for this new class of SRK methods are calculated by theelwoted tree analysis and some
coefficients for explicit and implicit order two SRK methods a@etermined. The performance of
the new methods is confirmed by the results of some numeneahples.

A Simple Method for Solving PDEs on Surfaces using the Closesbiht
Steven Ruuth Barry Merriman
(Simon Fraser University, Canada)

Many applications require the solution of time dependentigdadifferential equations (PDES) on
surfaces or more general manifolds. Methods for treatirty goblems include surface parame-
terization, methods on triangulated surfaces and img@igiface techniques. In particular, implicit
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surfaces using level set representations have receivetitrattention due to their relative sim-

plicity. Level set based methods have several limitatidtnosyever. These include the inability

to naturally treat open surfaces or objects of codimensiandr higher. Level set methods also
typically lead to a degradation in the order of accuracy wémved on a banded grid.

This talk describes an approach based on the closest pirgsentation of the surface which

eliminates these and other limitations. A noteworthy featf the method is that it is remarkably

simple, requiring only minimal changes to the correspogdimee-dimensional codes to treat the
evolution of partial differential equations on surfaces.

System of Linear Differential Equations and Differential-Algebraic Equations
Masoud Saravi E. Babolian, R. England, M. Bromilow
(Department of Mathematics, Islamic Azad University-N&vanch, Noor, Iran)

In this paper, first we introduce, briefly, pseudo-spectrihd to solve linear ODEs and then, ex-
tend it to solve a system of linear ODEs and DAEs and compéaetéthod with other using some
numerical examples. Furthermore, because of appropriaigEe of Chebyshev-Gauss-Raudo
points we will show that this method can be used to solve a DABsnever some of coefficient
functions in constraint are not analytic by providing somareples.

Meshfree Explicit Local Radial Basis Function Collocation Metha for Microscopic and Ma-
croscopic Phase Change Simulations

Bozidar Sarler

(Laboratory for Multiphase Processes, University of NovaiGa, Slovenia)

This paper uses a simple version of the classical meshléss basis function collocation (Kansa)
method for solution of the convective-diffusive soliddig phase change problems. The method
is structured on multiquadrics radial basis functions.tdad of global, the collocation is made
locally over a set of overlapping domains of influence andtitme-stepping is performed in an
explicit way. Only small system of linear equations with thimension of the number of nodes
included in the domain of influence have to be solved for eatlenThe computational effort thus
grows roughly linearly with the number of the nodes. The mapility of the recently deduced
method is shown on several involved numerical test casekidimg coupled fluid flow, heat and
mass transfer on the microscopic and macroscopic scale adioenatic adaptive redistribution,
adding/removing of the collocation nodes is shown on themla of dissolution of different
phases in multicomponent aluminium alloys.

A Multirate Time Stepping Strategy For Stiff ODEs
Valeriu Savcencq W. Hundsdorfer, J.G. Verwer
(CWI, The Netherlands)

To solve ODE systems with different time scales which araliaed over the components, multi-
rate time stepping is examined. We introduce a self-adjgstiultirate time stepping strategy, in
which the step size for a particular component is determbeitis own local temporal variation,
instead of using a single step size for the whole system. \egpity consider implicit time step-
ping methods, suitable for stiff or mildly stiff ODEs. Nunneal results with our multirate strategy
are presented for several test problems. Comparisons vetbatresponding single-rate schemes
show that substantial gains in computational work and CPldioan be obtained.

51



Fast and oblivous convolution

Achim Schadle, M. Lopez-Fernandez, Ch. Lubich

(Zuse-Institute Berlin, Germany)

A fast algorithm to evaluate convolution integrals is presd. The convolution(t) = fot k(t —
7)g(7)dr is discretized by the convolution quadrature = > 7 w,;g;. c, is then eva-
luated with precisiore for all n = 1,..., N with O(Nlog(N)log(¢~')) operations requiring
O(log(N)log(¢7!)) only active memory. The algorithm requires the evaluatibthe Laplace
transform of the convolution kerné| which is assumed to be sectorial, and is based on the nume-
rical inversion of Laplace transforms using contour inédgr

In a simple numerical example the algorithm is used to solsabadiffusion equation.

This talk is closely related to the one presented by M. Ldpemrandez.

Parameter optimization for explicit parallel peer two-step methods
Bernhard A. Schmitt, Rudiger Weiner
(University of Marburg, Germany)

Peer two-step methods for time integration usstages having identical stability and accuracy
properties. Explicit parallel peer methods have a very ®nsgructure withs parallel function
evaluations followed by one large parallel matrix mulgalion. We show that the stability po-
lynomial of a certain subclass withs + 1 parameters has less degrees of freedom and depends
linearly on a set of only + 1 new parameters. By using flexible root locus bounds for thei-sta
lity polynomial we avoid eigenvalue computations and redparameter optimization to a linear
program which is solved exactly by the simplex method. The and shape of the stability region
serve as constraints under which a certain long-term eomstant is minimized. The result carries
over to a larger subclass of explicit peer methods where ¢pentdence becomes semilinear with
the option to use linear programming as an inner solutiorhotedf a Monte-Carlo search. Rea-
listic parallel tests of some peer methods witk 8 stages using OpenMP are presented showing
nearly optimal speed-up for expensive problems like cigllestulti-body systems.

Adaptive Multilevel Techniques for Meshfree Methods
Marc Alexander Schweitzer
(Institut fir Numerische Simulation, UniveraitBonn, Germany)

In this talk we present an adaptive multilevel solver for plagtition of unity method. Core ingre-
dients of our method are a subdomain error estimator to stearefinement of a particle cloud
and a multiplicative multilevel iteration. The results aframumerical experiments in two and three
space dimensions indicate that the estimator is efficiedtraliable and that the overall solver is
of optimal complexity.

An Eulerian-Lagrangian Method for Coupled Parabolic-Hyperbolic Equations
Mohammed Seaid
(Universitat Kaiserslautern /AG Technomathematik, Germany)

Coupled parabolic-hyperbolic equations appear in mathieadaodelling of many practical app-
lications in physics and engineering. In this contributispecial attention is given to problems in
radiation hydrodynamics. The numerical solution of suatbfgms is not trivial due to the diffe-
rent nature of the equation governing the hydrodynamicsaaidtion and also due to the different
time scales. It is well known that fluids flow with speed of sowvhile radiative signals propagate
with the speed of light. Using the same discretization fahksynamics results in an inefficient
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solver since the required time steps should be bounded gshest speed. Our attempt is to con-
struct numerical time integration schemes for coupledipaie-hyperbolic equations, which rely
on the idea of Eulerian-Lagrangian methods that are staiols@cond order in time. The methods
consist of integrating the hyperbolic equations in theeysalong the characteristics. This moves
many difficulties related to the treatment of convectioom®rand allows for large time steps in
the computational process. The parabolic equations inytbies are solved using Eulerian me-
thod. The strong relationship between the nature of coupdedbolic-hyperbolic equations and
the choice of the most appropriate time marching with latgbibty region is also highlighted for
some of these results.

Numerical results for a class of coupled parabolic-hypkelemuations demonstrate the ability of
our algorithms to better maintain the shape of the soluticthé presence of shocks and disconti-
nuities. The robustness, accuracy and efficiency of theslkeade are illustrated and compared in
several benchmark problems from radiation hydrodynamics.

Numerical analysis of a coupled model for the simulation of kectrical circuits
Monica Selva Soto
(University of Cologne, Germany)

The goal of this talk is to present a model for the simulatibalectrical circuits that consists of a
coupled system of differential algebraic and partial dédfgial equations. The partial differential
equations describe behaviour of the semiconductor deindd circuit. For the numerical solu-
tion of this model we discretize in space the partial difféia@ equations in the system and solve
the resulting differential algebraic equation. During takx a brief description of the model will
be given and some of its properties will be presented. Itss alr purpose to discuss some of our
simulation results and compare them with those obtainethusidifferent approach, namely the
coupling of two simulators.

Some aspects of collocation and least squares method for rdimear hyperbolic equations
Leonid Semin, Denis Kharenko
(Institute of Theoretical and Applied Mechanics SB RAS, Rajssi

In the present study we propose a numerical method for splwonlinear hyperbolic equation
which is based on simultaneous usage of collocation methddeast-squares technique. Nu-
merical solution in each grid cell is searched for as lineanigination of basic functions. The
latter were taken belonging to the space of polynomials.réieoto find coefficients of solution
expansion by basic functions we use collocation methodwesrequire boundary conditions, mat-
ching conditions between cells, differential equation ¢oshtisfied in specified points. We took
the number of these equations greater than number of unisxdwe found a solution of this over-
determined system by least-squares method. The methodg@opvas applied to problems where
the solution has discontinuous derivatives. We developedvariants of the method with basic
functions belonging to the space of polynomials of secoraitaird orders, variant for the first
order system derived from initial second order equatiore Vdriants were compared numerically.
A method of accelerating the convergence of iterations wasldped which also gives oscillations
damping at discontinuities. This study was supported by RFBRtdNr. 06-01-00080-a.
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Sensitivity Analysis for ODE and DAE systems
Radu Serban
(Lawrence Livermore National Laboratory, USA)

Sensitivity Analysis (SA) is the study of how the variationthe output of a model (numerical or
otherwise) can be apportioned, qualitatively or quarnidy, to different sources of variation. For
dynamical systems the most efficient and accurate SA applisabe so-called continuous sen-
sitivity equation which implies generating and solving iiddal systems, the solutions of which
provide either the sensitivities of the states (forward 829f some functional of the states (adjoint
SA) with respect to model parameters.

We present some of our previous and current work on methoills émphasis on adjoint SA),
implementation (in SUNDIALS, Suite of Nonlinear and Diféegrtial/Algebraic Equation Solvers),
and applications. We present applications of SA to the asserst of reduced-order models under
perturbations and to the approximation of response sugfiacesffective sampling for uncertainty
guantification.

BS Methods and their Associated Spline
Alessandra Sestini Francesca Mazzia and Donato Trigiante
(University of Firenze, Italy)

BS methods define a class of Boundary Value Methods for solvemgial Boundary Value Pro-
blems numerically. Their distinguishing property is tHa tontinuous extension of the numerical
solution generated by the-step BS method can be computed with negligible additionalpze
tational cost using & + 1)—degree spline having* smoothness and sharing with it the approxi-
mation order. Both their stability features and an efficiemplementation in the setting of general
nonuniform meshes have been studied in [1] and [2], respygtiHere we introduce an efficient
algorithm devised for the computation of the spline coedfits using the B-spline basis. The
continuous extension is useful especially when we deal motilinear problems which are solved
using a quasi—linearization technique [3]. The hybrid m&slection strategy introduced in [4] is
used in combination with these methods in all the numerixpéements.

References

[1] F. Mazzia, A. Sestini and D. Trigiante (2006), B-spline Multistep Melhand their Continuous Exten-
sions, Siam J. of Numerical Analysis, in press.

[2] F. Mazzia, A. Sestini and D. Trigiante (2006), BS Linear Multistep Metthon Non—uniform Meshes,
JNAIAM, in press.

[3] F. Mazzia and I. Sgura (2002), Numerical approximation of nonhiB&Ps by means of BVMs, Appl.
Numer. Math., 42, 337-352.

[4] F. Mazzia and D. Trigiante (2004), A Hybrid Mesh SelectionStrateggeldl on Conditioning for Boun-
dary Value ODE Problems, Numerical Algorithms 36, 169-187.
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Solving elliptic problems with singularities using finite difference schemes
Vasily Shapeey Alexander Shapeev
(Institute of Theoretical and Applied Mechanics, Novoskj Russia)

Boundary-value problems with singularities are solved mica#ly using high-order finite diffe-
rence schemes (the sixth- and tenth-order schemes). Tvatepme were considered. In the first
problem

Au(z,y)=1, 0<z<1 0<y<I1,
U|F:O

for the Poisson equation the singularity consists in theaisnuity of solution derivatives at the
corner point of the rectangular domain. In the second proble

’u  O%*u ou ou
=T s —a) e+ (y—b) 5 = <r<1, 0<y<
ﬁ<8x2+8y2)+(x a)ax—i-(y b)ay 0, 0<z<1, 0<y<1,

u’l—‘ = U(QJ, y)

with the small parameteB(= 10~*) at the highest derivative the singularity consists in a thner
boundary layer. The solution behaviour and convergenckeeohtimerical solution on a sequence
of grids has been analysed with the help of exact solutioretundlly, the order of convergence
was less than the approximation order. However, in bothscdse convergence order of high-
order method was higher than the convergence order of lo@ranethods. This allows to gain a
good accuracy with a small number of grid nodes. The deawmati the finite difference schemes
and the analysis of the solutions were carried out with tHp bethe computer algebra system
Mathematica. (A.V. Shapeev, V.P. Shapeev. Differencerelseof increased order of accuracy
for solving elliptical equations in domain with curvilineaoundary. Journal of Computational
Mathematics and Mathematical Physics, 2000, 40 (2), p.Z323).

One Family of Symmetric One-Step Methods of Order Four
Sergey Shindin G. Yu. Kulikov
(University of the Witwatersrand, Johannesburg, SoutlicafrSouth Africa)

In the talk we present a new family of one-step methods whiehsafficiently accurate. These
methods are of the Runge-Kutta type. However, they have omijot internal stages that leads
to cheap practical implementation. On the other hand, temethods are of classical order 4
and stage order 2 or 3. They arestable symmetric and conjugate to a symplectic method at
least up to order 6. All of these mean that they are applicablolve both nonstiff and stiff
ordinary differential equations (including reversibledadamiltonian problems) and possess all
the necessary practical features making them quite atteact

Dynamic Contact and Differential-Algebraic Equations
Bernd Simeon
(TU Miinchen, Zentrum Mathematik, Germany)

Dynamic frictionless contact is typically modelled by a¢irdependent variational inequality. Pen-
alty techniques introduce stiff springs at the contactriat®e and represent a regularization tech-
nique. On the other hand, the Lagrange multiplier approadbrees the impenetrability cons-
traint by unilateral constraint equations. Not surprigmghis problem class is closely related
to the differential-algebraic equations arising in mudtly dynamics. Due to the continuum me-
chanics model, however, we have to deal here with a uniliteranstrained partial-differential-
algebraic equation. Several questions arise in this canWkat is the connection between the
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LBB-condition and the index? What are the requirements for algooe integration method?
Is regularization as it is implemented in commercial sirtiatfacodes a reliable and efficient ap-
proach? The talk will address these questions and discuss second order integrators, including
explicit schemes based on the central difference methodnapiétit ones based on the midpoint
rule. Transition conditions in impact situations will alse covered.

Exponential integrators and spectral element methods
Bard Skaflestad Anne Kvaerng
(NTNU, Norway)

The ‘OIFS’ framework of Maday and co-workers (1990) usesaglsimilar to exponential inte-
grators in the construction of splitting methods for theoimpressible Navier—Stokes equations.
However, a possible problem with the resulting schemes slgebraic splitting error stemming
from the diffusion operator. Moreover, this error term daes vanish in the case of steady state
flows. On the other hand it is not—to the best of our knowledgaewn to what extent the split-
ting error degrades the numerical solution.

Employing exponential integrators for the temporal dissegion, we can eliminate this particular
error term. Consequently, we are able to gather empiricdeene on the degradation mentioned
above. This talk will show work in progress in this direction

Adaptive Grids
Gustaf Soderlind
(Numerical Analysis, Lund University, Sweden)

In discretization methods for differential equations thisra trade-off between accuracy and com-
putational effort. Efficiency (the terms of trade) can beliaved by using adaptive methods; grid
points are not chosen uniformly but are put where they reabiyter to accuracy. Their number
is kept as small as possible subject to keeping the disatitiz error below a prescribed tole-
rance. Differential equation solvers use grid adaption smmdetimes variable order to increase
computational efficiency.

Although technically different, there are similar congaténs in initial value ODE solvers, DAE
solvers and two-point boundary value problem solvers. @ppooblems, such as reversible pro-
blems and energy conserving systems, may have highly spesifuirements.

Grid and order control algorithms have often been heurisiit today these algorithms can be
designed and analyzed using mathematical principles. ricpkar control theory, signal proces-
sing and variational principles are useful in the moderngiesf adaptive grid algorithms. The
techniques extend beyond ordinary differential equattongartial differential equations, where
grid refinement and moving mesh algorithms are of importance

In this talk, we will focus on new techniques for ODEs, DAEs &vo-point BVPs. Examples will
be given to illustrate

1) Step size control affects computational stability

2) Hamiltonian systems can be solved with both energy coatien and adaptive step size selec-
tion; as a result, both accuracy and efficiency increase

3) Grid refinement (or moving meshes) can be constructedl@asgariational principles
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Numerical solution of 1D and 2D shallow water equations in te MATLAB environment
Gerd Steinebach
(University of Applied Sciences Bonn-Rhein-Sieg, Germany)

Many engineering models concerning water flow in rivers castal regions are based on the
shallow water equations (SWE). These well known hyperbajica¢ions can be derived from mass-
and momentum conservation principles. The main difficsilice numerical solution schemes arise
from the friction slope, form variable bed elevations areldhying and rewetting of regions within
the computational domain.

These difficulties are analysed and appropriate spaceetismtion schemes are proposed. A wi-
dely open question is the choice of the time-integrator. Bucal comparisons are performed
with the default MATLAB integrators and new MATLAB implemtations of the ROW-method
RODASP, the stabilized Runge-Kutta methods ROCK2 and ROCK4amdbinations of those.
The problem solving environment MATLAB has been chooserntliese studies because of it's
ease of use. l.e. 2600 lines of code of the FORTRAN implemientatf RODASP could be
reduced to 320 lines in MATLAB. Moreover, MATLAB is a widely eepted computing platform
in the engineering community.

Pattern Formation due to Cell Motion
Angela Stevens
(Max-Planck-Institute for Mathematics in the Sciences;naay)

Cell motion and reorientation is a fundamental process ily el@velopment, tissue organization,
and tumor metastasis. Changes of behavior on the microstamt- singel cell motion - of-
ten result in changes of structures on the macroscopic tEveéll populations. To undestand
these effects in detail, mathematical models for chemstard cellular aligment are discussed
and connections between models on different scales deriVemhsport type models as well as
parabolic models are of interest in this context.

High-order exponential operator splitting methods for thetime-dependent Schbdinger equa-
tion

Mechthild Maria Thalhammer

(University of Innsbruck, Austria)

In this talk, | am concerned with deducing high-order erroutds for exponential operator split-
ting methods. The employed techniques are specific to difteal equations that involve an un-
bounded linear operator. In particular, evolutionary &dimger equations with sufficiently regular
initial values are included in the analysis.

Abstract Differential-Algebraic Equations
Caren Tischendorf
(Universitat zu Koln, Germany)

The simulation of complex systems describing differentgitsl effects becomes more and more of
interest in various applications, for instance, in chipigiesin the development of micro-electro-
mechanical systems (MEMS), in structural mechanics, imieichanics and in medicine. The
modeling of complex processes often lead to coupled sydtemhare composed of ordinary diffe-
rential equations (ODES), differential-algebraic equasi(DAES) and partial differential equations
(PDEs).
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Such coupled systems can be regarded in the general frakeWabstract differential-algebraic
equations of the form

d
A(u,t)&D(u,t) + B(u,t) =0, t € [to, T).
This equation is to be understood as an operator equatibrogérators4(-, ¢), D(-,t) andB(-, t)
acting in real Hilbert spaces whete [ty, 7] — X is the solution belonging to a problem adapted
space. For most coupled systems, the operadaasdD are neither identically zero nor invertible
on the time intervalt,, 7).

A general theory of abstract differential-algebraic eoqret (ADAES) does not exist and can not
be expected to be given considering alone the complexityalflpms simulating partial differen-
tial equations. However, special classes of ADAEs haventicbeen successfully analyzed and
simulated. We want to give a short overview of treated ckaasel discuss basic ideas of different
approaches to handle coupled problems.

Integration of large stiff systems of ODEs with exponential popagation iterative (EPI) me-
thods

Mayya Tokman

(University of California, Merced, USA)

New exponential propagation iterative (EPI) schemes asggded to efficiently integrate large
stiff systems of ODESs over long time intervals. The EPI mdthare constructed by approxima-
ting the integral form of the solution to a nonlinear autoas system of ODEs by an expansion
in terms of products between special functions of matrioelsvectors. The matrix function-vector
products are calculated using Krylov subspace projectibosproblems where no good precondi-
tioner is available, the EPI integrators can outperformadad methods since they possess superior
stability properties compared to explicit schemes and affenputational savings compared to im-
plicit Newton-Krylov integrators by requiring fewer Arrebiterations per time step. We discuss
construction of the EPI schemes and present several medithis type. Performance of the EPI
methods is demonstrated using illustrative numerical gtasnand comparisons with standard
explicit and implicit integrators.

Optimal scaling of high index DAEs
Lorenzo Trainelli, Carlo Bottasso
(Dipartimento di Ingegneria Aerospaziale, Politecnicd/lano, Italy)

We develop a new theoretical analysis which justifies thicdities arising from finite precision
arithmetics in the numerical solution of high index diffetial algebraic equations (DAES). As it
is well known, errors and perturbations pollute the nunarsolution causing disastrous effects
for small values of the time step size.

Among the remedies presented so far in the literature, tsemajority attack the problem by
lowering the differential index to 2 or 1, seeking higher rasmal robustness. In this approaches,
the governing equations are tipically recast in some caewéform and/or additional constraints
and multipliers are introduced, increasing the complesitihe basic framework.

In this work, we take a different route altogether. Based @npievious analysis, we propose a
preconditioning strategy consisting of a simple scalinghef unknowns and the equations which
completely cures the conditioning and sensitivity to pdrations. As a result, the robustness of
the numerical solution is radically enhanced, as confirmedumerical experiments.
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This remarkably plain recipe, that can be trivially implerted in existing codes, leads to per-
fect time step size independence for the perturbationd ebéltion fields and condition number,
basically making high index DAEs as easy to solve numesicalwell behaved ODEs.

Modelling nematode swimming behaviour using the immersed bhandary method
Rebecca TysonChris Jordan, Justin Hebert, Lisa Fauci
(University of British Columbia Okanagan, Canada)

How does a given aquatic organism'’s wiggling result in ptsjpm? This has been well investiga-
ted in fish and in microorganisms such as bacteria where #o®ws or inertial terms of the fluid
equations can be ignored. Less has been done at interm&gitwlds’ Number, and further-
more, the actual interaction between the organism’s mata@ and the surrounding fluid is not
well understood. In this talk we focus on the swimming bebawrof the nematode, a roundworm
The immersed boundary method lends itself very well to thdysbf organism locomotion in fluid.
Movement of passive nematode-like structures has beerssfodly modeled in complex flows.
Active swimming of small organisms has also been sucegsfutidelled when the restlength of
each muscle segment is prescribed, and an energy minimuonganism configuration obtained.
We are interested in modelling the development of swimmimgion from rest, when motion is
generated by the contraction of innervated muscle segments

We have developed a three-dimensional model for the bodgtsie of the nematode, which
explicitly models the organism’s musculature. The immerseundary method is then used to
communicate between the nematode body and the surroundidg fThis model allows us to
study how the nematode musculature and surrounding fluetaot to create propulsion of the
nematode.

Exponentially-fitted Obrechkoff methods
Marnix Van Daele, G. Vanden Berghe
(Ghent University, Belgium)

In the last 15 years our research group has done a lot of woekponential fitting. This research
has lead to exponentially fitted linear multistep method$ Range-Kutta methods. Typically,
these methods have coefficients with depend on a parameténaitea is to choose the parameter
in such a way that the method is optimized in some sense.

In the present talk, we consider the construction of expbakfitted Obrechkoff two-step me-
thods for second order differential equations. We focusammous aspects, such as the order and
the stability of such a method.

A time-parallel time-integration method for ordinary and p artial differential equations
Stefan Vandewalle Martin Gander, University of Geneva
(Katholieke Universiteit Leuven, Department of ComputeieSce, Belgium)

During the last twenty years several algorithms have beggesied for solving time dependent
problems parallel in time. In such algorithms parts of thieitson later in time are approximated
simultaneously to parts of the solution earlier in time.

A recent method was presented in 2001 by Lions, Maday anai€yrwho called their algorithm
the parareal algorithm [1]. The name was chosen for thetiveralgorithm to indicate that it is
well suited for parallel real time computations of evolatiproblems whose solution can not be
obtained in real time using one processor only. The methodtsneant as a method to be used
on a one processor computer. One iteration of the method atready as much as the sequential
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solution of the entire problem, when used on one procesdgribhowever several processors are
used, then the algorithm can lead to an approximate solutitess time than the time needed to
compute the solution sequentially.

The parareal algorithm has received a lot of attention dverpiast few years and extensive ex-
periments have been done for fluid and structure problemshisntalk, we will show that the
parareal algorithm can be reformulated as a two-level spaemultigrid method with a strong
semi-coarsening in the time-dimension. The method cantasseen as a multiple shooting me-
thod with a coarse grid Jacobian approximation. These atgnees have opened up new paths for
the convergence analysis of the algorithm, which is thectopthe second part of this talk.

First, we will show a sharp linear, and a new superlinear eayence result for the parareal al-
gorithm applied to ordinary differential equations. Werthese Fourier analysis to derive con-
vergence results for the parareal algorithm applied taglatifferential equations. We show that
the algorithm converges superlinearly on bounded timevate, both for parabolic and hyperbo-
lic problems. On long time intervals the algorithm converdjaearly for parabolic PDEs. For
hyperbolic problems however there is no such convergericaas on long time intervals.
References

[1] Lions, Maday, and Turinici, A "parareal” in time discrgation of PDE’s, C.R. Acad.Sci. Paris,
t.332, pp. 661-668, 2001.

An algebraic multigrid method for high order time-discreti zations of the div-grad and curl-
curl equations

Stefan Vandewalle Tim Boonen

(Katholieke Universiteit Leuven, Department of ComputeieSce, Belgium)

The spatial discretization of time-dependent partialedéhtial equations by finite elements, finite
difference or finite volumes leads to systems of ordinarfediintial equations of very large dimen-
sion. Such systems can no longer be solved efficiently byicialsODE software. Their solution
requires specialized solvers that take the structure gbtblelems into account.

When using higher order implicit Runge-Kutta or Boundary VaMethod time-discretization
schemes, the size of the system to be solved in every timastepnts to a multiple of the number
of spatial unknowns. We will show in this talk that these eyst can be solved very efficiently,
with a complexity that is linear in the number of unknowns wimeultigrid PDE-algorithms are
used.

We will present in particular an algebraic multigrid algbm fully coupled implicit discretizations
of the time-dependent diffusion and curlcurl equationse &lgorithm uses a blocksmoother, upda-
ting all stage values related to a grid point simultaneousye multigrid hierarchy can be derived
from the hierarchy built by any suitable AMG algorithm foetktationary version of the problem
considered. By a theoretical analysis and numerical exgerisn we show that the convergence of
the algorithm is similar to the convergence of the statip@aviG algorithm on which it is bas

Recent advances in multiscale modeling of the circulatoryystem
Alessandro VenezianjL. Formaggia, C. Vergara
(Politecnico di Milano, Italy)

Geometrical multiscale modeling of the arterial tree hanlexploited in different contexts, inclu-
ding cases of clinical interest (see e.g. [1,2,3]). Thisrapph relies on the numerical coupling of
models with a different level of accuracy, ranging from 3Ddwals in a vascular district of interest
to lumped parameters models for the description of the pergd arteries, the venous system, the
heart. These numerical models can be regarded as the outd@m®main decomposition of the

60



problem formulated over the whole circulatory system andoaehsimplification in the regions
far from the district of interest. In this approach, there tavo main issues:

1. the mathematically sound approximation of defectivagabblems, i.e. 3D problems with
incomplete boundary data (e.g. mean pressure or flow ratgin@d when the simplified
models are used for specifying boundary data to the acc@ftenodels in an iterative
framework;

2. the numerical coupling of the different submodels.

In this talk, we address some recent results concerningtheek issue. In particular, we consider
a general approach for solving in a reliable way defectivenolary problems, based on the solution
of suitable control problems.

References:

1. L. Formaggia, F. Nobile, A. Quarteroni, A. Veneziani, Msdale modeling of the circulatory
system: a preliminary analysis, CVS 2, pp.75-83 (1999)

2. F. Migliavacca, R. Balossino, G. Pennati, G. Dubini, T. Hsi®l. de Leval, E.L. Bove,
Multiscale modeling in bio-fluiddynamics, application &constructive paediatric surgery,
to appear in J. Biomech

3. K. Lagam, R. Balossino, F. Migliavacca, G. Pennati, M. de Leval, E.LvéBG. Dubini,
Multiscale modeling of the cardiovascular system: appilicato the study of pulmonary
and coronary perfusions in the univentricular circulatidrBiomech. 38:1129-1141

General Linear Methods for Index-2 Differential-Algebraic Equations
Daniel Weil3
(University of Cologne, Mathematical Institut, Germany)

General linear methods (GLMs) were introduced approxiipalérty-five years ago as a unifying
approach for the study of consistency, stability and caysece of the Runge-Kutta and the linear
multistep methods. Actually new methods which were neittenge-Kutta nor linear multistep
methods were derived.

Differential-Algebraic equations (DAES) arise in variaimulation problems like chemical reac-
tions, electric circuits, and mechanical multibody systerihey are characterized by their per-
tubationindex which provides a measure of the sensitivitthe solution to pertubations in the
equation. Differential-Algebraic equations of multiboslystems have in general Index 3, but in
their GGL-Formulation the Index is reduced to 2.

The present talk concerns the consistency, stability andergence of general linear methods for
Index-2 DAEs in Hessenbergform. Furthermore it deals wihexcial class of GLMs, the so called
multistep collocation methods. The convergence of suclhaast can be improved by a certain
projection step.
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Calculation of Transient Magnetic Fields Using 3R-Strateges
Georg Wimmer, Thorsten Steinmetz, Daniel Weida, Markus Clemens
(Helmut-Schmidt-Univers#t Hamburg, Germany)

The discretization of transient magneto-dynamic field f@ots with geometric discretization sche-
mes such as the Finite Integration Technique or the FirléeaEnt Method based on Whitney form
functions results in nonlinear differential-algebraics®ms of equations of index 1. Their time
integration with embeddeg stage singly diagonal implicit Runge-Kutta methods reggithe so-
lution of s nonlinear systems within one time step. Accelerated swiudf these schemes is achie-
ved with techniques following so-called 3R-strategie®(ise,recycle,reduce”). This involves
e.g. the solution of the linear(-ized) equations in eacletstep where the solution process of the
iterative preconditioned conjugate gradient method reasd recycles spectral information of pre-
vious linear systems. Additionally, in order to resolveundd eddy current layers sufficiently and
regions of ferromagnetic saturation that may appear orstiadepending on the external current
excitation a combination of an error controlled spatial@nay and an error controlled implicit
Runge-Kutta scheme is used to reduce the number of unknowtisef@algebraic problems effec-
tively and to avoid unnecessary fine grid resolutions bo#perce and time. To allow for a transient
mesh refinement while avoiding repeated and computatpeapensive re-meshing processes an
advanced hanging node technique is applied using treedgfaestructures. Continuity constraints
at the hanging nodes are enforced within the iterative mwlytrocess which additionally uses
subspace projection deflation-type techniques for furdloeeleration. First numerical results for
2D nonlinear magneto-dynamic problems validate the pteseapproach and its implementation.

The scaling and squaring technique for matrices related to tk exponential
Will Wright
(La Trobe, Australia)

Exponential integrators require the evaluation of masridesely related to the matrix exponential.
Often the number of the so calledfunctions evaluated is related to the order that the expigaien
integrator can achieve. We will examine what a near optirhaiae of the degree of the Fad
approximation is and how to scale and squareglienctions efficiently.

Legendre Scaling function for solving of generalized Emden-&wler equations
Sohrab Ali Yousefi, Ehsan Banifatemi
(Department of Mathematics, Shahid Beheshti Universityde, Iran)

A numerical solution of the generalized Emden-Fowler eiguatas singular initial value pro-

blems is presented. We first rewrite Emden-Fowler equaticdhe form of integral equation by

using especial integral operator and then applying Legesdaling function approximation. The
properties of Legendre scaling function are first presenfEldese properties together with the
Gaussian integration method are then utilized to reductbgral equations to the solution of al-
gebraic equations. lllustrative examples are includecetoa@hstrate the validity and applicability
of the technique.

Method of Lines for Stochastic Partial Differential Equations
Mostafa Zahri, Andreas RR3ler, Mohammed Seaid
(Fachbereich Mathematik, Johann Wolfgang Goethe-Unitagts Germany)

We propose a class of numerical methods for solving stoichbstindary-value problems. The
methods use the deterministic method of lines to treat the,tspace and randomness separately.
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The spatial discretization can be carried out using stahfilite difference or finite volume me-
thods, while the associated stochastic differential sgyssenumerically solved using an embedded
stochastic Runge-Kutta method. The performance of the gexpmethod is tested for a stocha-
stic heat equation and a stochastic advection-diffusioblpm driven with white noise. Numerical
results are presented in both one and two space dimensions.

Numerical Solutions of Design Nonplanar Transistor Structires. Hydrodynamics Approach
Alexander Zakharov, Balashov A., Krupkina T.
(Institute of Microtechnologies Russian Research CentercKaiov Institute”, Russia)

Numerical modeling is a very effective tool for developmant optimization of integrated devices
that allows to minimize development time and costs. The lprab of numerical modeling and
simulation of non-planar transistor structures with aid 6AD have been investigated. The most
complicated aspects have been defined and analyzed: mpaélshallow doping profiles and
non-planar gate, mesh defining and building, simulationari-tocal effects that affect the device
performance.
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