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1 General Information

1. Conference Location and Lecture Rooms
The conference will take place in the lecture rooms A, B, and Z on the ground floor of the
Melanchthonianumituated on th&niversitsplatzin the centre of Halle.

Opening and closing of the seminar as well as plenary lectures (Monday to Rrmtayng,
except Tuesday) take place in lecture room B. In addition, the lecture rooms A arsl Z
used for minisymposia (Tuesday morning) and contributed talk sessions (Mondagayues
and Thursday afternoon).

2. Conference Office and Registration
The conference office is also situated in elanchthonianum The conference office is
open on Sunday, September 3, 2000 from 4 p.m. to 8 p.m., on Monday, Tuesday and Thurs-
day from 8 a.m. to 4 p.m., and on Wednesday and Friday from 8 a.m. to 12 a.m. You can
reach the conference office by phone (+49 (345) 5521045 or +49 (345) 5521048) and by fax
(+49 (345) 5521047). These lines are active from Sunday, September 3, 2000.

Please register in the conference office after your arrival. You wilktla¢so receive your
conference documents.

3. Time of Lectures and Discussion
Please note that the lecture times as given in the programme already indadssiton time
of 5 minutes.

4. Coffee and Tea Breaks
Coffee and tea are provided during the morning and afternoon breaks.
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. Lunch Break
A cafeteria is located in thduridicumdown the steps of th&niversitsplatz Further,
the Mensa Harzis a 5 minute walk away and around tMarktplatzthere are different
restaurants. Please ask local participants or the staff in the confeséfiroeefor further
information.

. E-mall
There will be a computer with telnet and internet access available irotiference office.

. Conference Dinner

The conference dinner will be held in the hoBtkigenberger Esprix Halle—Neustadt on
Thursday, September 7, 2000 at 19.30. The meal is included in the conference fee; partic
pating students and accompanying persons pay DM 25. The fee for the dinner is payable in
cash when registering in the conference office.

. Guided Tour on Wednesday afternoon

There are no scientific sessions on Wednesday afternoon. Instead you can \Asahée
logisches Museurmf the university in théRobertinum There will be a guided tour (English).
We meet at 2 p.m. in front of the conference office and the tour will take about 1 to 1.& hour

You can also use this afternoon to explore the city and its surrounding area witfrigods
or by yourself.

. Conference Proceedings
Selected papers will be published in a Special Issue of the JoAppdied Numerical Math-
ematics Guest editors are B.P. Sommeijer, K. Strehmel, J.G. Verwer and ReWei

Submitted conference papers must deal with original work not published elsewitenglla
be refereed according to the standard journal procedure.
Seehttp://www.elsevier.nl/locate/apnum for the statement of objectives.

All papers should be sent in triplicate to:  Dr. B.P. Sommeijer
Cwi
P.O. Box 94097
1090 GB Amsterdam
The Netherlands

Authors are encouraged to use the journal style files, see the given web addiasgdior
tions. The restricted paper length is 20 style file pages.

The deadline for submission is December 1, 2000.
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3 Scientific Programme
Monday, 4 September 2000

Room B
9.00 Opening Address by Karl Strehmel
Welcome by the rector of the Martin—Luther—-University Halle—Witten berg
Magnifizenz Prof. Dr. W. Grecksch
Plenary Lectures
9.20 — 10.10 Jan G. Verwer
Numerical Time Integration of Air Pollution Models
10.10 — 10.30 — Break —
10.30 — 11.20 Claus Fihrer & Carmen Arevalo & Monica Selva

Variable Stepsize Extension of Multistep Formulas - A Review and new
Approaches

11.20 — 12.10 Wenfried Lucht
On quasi-linear PDAE’s with convection
12.10 — 14.00 — Lunch —

Contributed Talks
14.00 — 14.25 Marc Spijker

Are the Stability Estimates, in the Kreiss Matrix Theorem, Sharp ?
14.30 — 14.55 Amelia Garcia & Pablo Martin

New methods for oscillatory problems based on classical codes
15.00 — 15.25 Jorg Wensch

Extrapolation methods in Lie groups
15.25 — 15.45 — Break —
15.45 — 16.10 David J. Lopez & Pablo Martin & Amelia Garcia

A variable-stepsize variable-order multistep method for the integratiqrer-
turbed linear problems

16.15 — 16.40 Guido Vanden Berghe& L. Ixaru & H. De Meyer

Exponentially-fitted Runge-Kutta methods: construction and implementation
16.45 — 17.10 Volker Grimm

Exponential Integrators for Classical Molecular Dynamics

17.15 — 17.40 Hans-Eberhard Scholz
Implicit Taylor series methods and stiff semi-linear initial value proide
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Room Z
14.00 -

14.30 -

15.00 —

15.25 —
15.45 —

16.15 —

16.45 —

17.15 -

Contributed Talks

14.25 Makky Jaya & Claus-Dieter Munz
Modular Implementation of Navier-Stokes Equation Solver on Arbitrary/Hybrid
Unstructured Meshes
14.55 Julia Novo & Javier de Frutos
Postprocessing the linear finite element method
15.25 Mansour A. Al-Zanaidi & M. M. Chawla
A linearly implicit one-step time integration scheme for second order nomlinea
hyperbolic equations
15.45 — Break —
16.10 Javier de Frutos & Julia Novo
A posteriori error estimation for evolutionary dissipative equations
16.40 Andy Georges & Marnix Van Daele
Acquiring a solution of the time-dependent Schrodinger equation using CP
methods
17.10 Vasily P. Shapeev& Leonid G. Semin
Adaptive Collocation and Least-Squares Method for Navier-Stokes Equations
17.40 Natalia Borovykh
Stability in the numerical solution of the heat equation with nonlocal boundary
conditions
Contributed Talks

14.25 Christian Grossmann & Zoltan Horvath
Two-sided enclosures for IVPs by means of bounding operators I: Construction
of bounding operators and convergence properties

14.55 Zoltan Horvath & Christian Grossmann
Two-sided enclosures for IVPs by means of bounding operators Il: Application
to PDEs

15.25 Larisa Piddubna & Igor Cherevko
Approximations of coupled differential and difference equations by ordinary dif-
ferential equations

15.45 — Break —

16.10 Marian Kwapisz
On delay dependent error estimates for waveform relaxation methods for
differential-functional equations

16.40 Zbigniew Bartoszewski
Numerical verification of delay dependent error estimates for WRM for
differential-functional equations

17.10 Mohammad R. Rahimpour & A. Azrapour
Numerical Solution of a Nonlinear Model of Urea Hydrolysis Reactor

17.40 Vadim Azhmyakov
Newton-Type Method for Solving Non-regular Equations
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Room B
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Tuesday, 5 September 2000

Minisymposium: Partial Differential-Algebraic Equations (Karl Strehmel)
9.05 Volker Mehrmann & Thilo Penzl & Fredi Troltzsch
Control of heterogeneous systems of partial and differential algebraic systems
9.40 Martin Arnold
Distributed time integration of coupled differential-algebraic systems
10.15 Michael Gunther
Generalized descriptor formulation in electrical network analysis
10.30 — Break —
11.05 Wieslaw Marszalek
A boundary value problem for linear PDAEs
11.40 Bernd Simeon
A weak descriptor form for constrained motion in elastodynamics
12.15 Jens Lang
Adaptive Multilevel ROW-Methods for Nonlinear PDAES
12.50 Werner M. Seiler
Involution Analysis of Semi-Discretisations of a Class of Linear Peiitier-
ential Systems
14.30 — Lunch —

Contributed Talks
14.55 Roland England & René Lamour
Integration of Index-One Differential-Algebraic Equations using Dichotonycall
Stable One-Step Formulae
15.25 Inmaculada Higueras
On numerical contractivity for DAESs
15.45 — Break —
16.10 Frank Cameron & Mikko Palmroth & Robert Piché
Low-order SDIRKS for DAEs
16.40 René Lamour & Diana Estevez Schwarz
The Computation of Consistent Initial Values for Nonlinear Index-2 Differential
Algebraic Equations
17.10 Jurgen Sand
On Implicit Euler for High-Order High-Index DAEs
17.40 Katalin Balla
Transfer equations and linear boundary value problems for DAEs



Room A
Minisymposium: Atmospheric Transport—Chemistry Problems (Jan G. Verwer)

8.30 — 9.05 Martin Berzins & A. Tomlin & S. Ghorai
Unstructured Adaptive Mesh Solvers for Atmospheric Dispersion Problems

9.05 — 9.40 Mike Botchev & Jan G. Verwer
Improving Approximate Matrix Factorizations for implicit time integration
Air Pollution Modelling
9.40 — 10.15 Oswald Knoth & Ralf Wolke
Coupled integration of chemistry and transport in microscale air quality
modelling
10.15 - 10.30 — Break —
10.30 — 11.05 Stig Skelboe
Partitioning techniques for decoupled integration of chemical reaction equations
11.05 — 11.40 Bruno Sportisse & Rafik Djouad
Simulation of aqueous-phase chemistry in Air Pollution Modeling
11.40 — 12.15 Ralf Wolke & Oswald Knoth
Time-Integration of Multiphase Chemistry in Size-Resolved Cloud Models
12.15 — 12.50 Zahari Zlatev
Large-scale computations in air pollution modelling
12.50 — 14.30 — Lunch —

Contributed Talks
14.30 — 14.55 Alexander Ostermann
Stability of W-methods with applications to operator splitting
15.00 — 15.25 Karel in 't Hout
On the contractivity of implicit-explicit linear multistep methods
15.25 — 15.45 — Break —
15.45 — 16.10 Alf Gerisch & Jan G. Verwer
Operator Splitting and Approximate Factorization for Taxis-Diffusion-Reac
Models
16.15 — 16.40 Robert Horvath
On the Monotonicity Conservation of the Numerical Solution of the One-
Dimensional Heat Equation

16.45 — 17.10 Hrant Hovhannissian
Five-pointed difference schemes for the equations of parabolic type



Room Z
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Minisymposium: Parallel Methods for Differential Equationgifiger Weiner)
9.05 Luigi Brugnano & Cecilia Magherini & Donato Trigiante
Blended Block Implicit Methods for the Numerical Solution of ODEs
9.40 Francesca Mazzia& Felice lavernaro
Generalized Backward Differentiation Formulae for parallel impletaton
10.15 Jason Frank & Pieter J. van der Houwen
Parallel Extended BDF Methods
10.30 — Break —
11.05 Bernhard A. Schmitt & Rudiger Weiner & Helmut Podhaisky
On the stability of two-step-W-methods
11.40 Helmut Podhaisky & Bernhard A. Schmitt & Rudiger Weiner
Numerical Experiments with parallel Two-step W-methods
12.15 Nguyen Cong & Nguyen Thi Hong Minh
Parallel PC iteration of pseudo RKN methods for nonstiff initial-value problem
12.50 Dana Petcu
Experiments with parallel methods for ODEs
14.30 — Lunch —

Contributed Talks
14.55 Lidia Aceto
The Pascal matrix and its relations with numerical methods for ODEs
15.25 Angel Duran & Miguel A. Lopez Marcos
Numerical behaviour of stable and unstable solitary waves
15.45 — Break —
16.10 Valeri A. Perminov
Numerical modeling forest fire spread initiation

16.40 Faisal Fairag
A Two-level Finite Element Method for the streamfunction form of the Navier-
Stokes Equations

17.10 Zdzislaw W. Trzaska
Solving Partial Differential Equations with Using Power Polynomials

17.40 Sergey Nurmagambetov
Quantum motion numerical calculation for axial channeling



Wednesday, 6 September 2000

Room B
Plenary Lectures

8.30 — 9.20 Thomas Sonar
From Finite Volume Approximations to Meshless Collocation for Hyperbolic
Conservation Laws

9.20 — 10.10 Roswitha Marz
On properly formulated differential-algebraic systems

10.10 — 10.30 — Break —

10.30 — 11.20 Zdzislaw Jackiewicz
Construction and Implementation of General Linear Methods for Ordinary Dif-
ferential Equations

11.20 — 12.10 Stefan Vandewalle

Multigrid dynamic iteration methods for delay differential equations
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Thursday, 7 September 2000

Room B
Plenary Lectures

8.30 — 9.20 Marlis Hochbruck
Exponential integrators
9.20 — 10.10 Philippe Chartier & R.P.K. Chan & A. Murua
Post-projected methods for index-2 DAESs
10.10 — 10.30 — Break —
10.30 — 11.20 Ken R Jackson& Ned Nedialkov
Validated Methods for IVPs for ODEs

11.20 — 12.10 Cesar Palencia
On the numerical recovery of holomorphic mappings and some applications to
ill-posed problems

12.10 — 14.00 — Lunch —

Contributed Talks
14.00 — 14.25 Renate Winkler

Structural analysis for stochastic DAES in circuit simulation
14.30 — 14.55 Johannes Schropp

Qualitative Properties of Discretizations for Index 2 DAE’s

15.00 — 15.25 Caren Tischendorf
DAE Structure and Index in Dependence on MOSFET Modelling in Circuit
Simulation
15.25 — 15.45 — Break —
15.45 — 16.10 Carmen Arevalo & Steven Campbell
Unitary Coordinate Partitioning for General DAE Integrators
16.15 — 16.40 Brahim Benhammouda
A Partial Differential-Algebraic Equations Approach for Elastic Rods

16.45 — 17.10 Yauheni Sonets& V. V. Bobkov
Multistage algorithms for numerical solution of ODEs
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Contributed Talks

Mari Paz Calvo & Cesar Palencia
Avoiding the order reduction of Runge-Kutta methods for linear initial boundary
value problems

Mechthild M. F. Thalhammer & C. Gonzalez & A. Ostermann & C. Palencia
The dynamical behaviour of Runge-Kutta time discretizations for nonlinear
parabolic problems near an equilibrium point

Roland Pulch

A method of characteristics for solving multirate partial differentgua&tions in
radio frequency application

— Break —

Istvan Faragb & C. Palencia

Sharpening the stability bound in the maximum-norm of the Crank-Nicolson
scheme for one-dimensional heat equation

Joerg Sautter
Strategies for the Numerical Solution of the Navier-Stokes Equations

Muhammed I. Syam
Path Following-Collocation Method for Solving Burger’s Equation

Contributed Talks

Felice lavernaro & Francesca Mazzia

Block Boundary Value Methods used as General Linear Methods
Ivonne Sgura & Francesca Mazzia

Numerical Approximation of Nonlinear BVPs by means of BVMs

Marnix Van Daele & J. R. Cash
A new method to solve first order Systems of nonlinear two-point boundary value
problems

— Break —

Tanja Van Hecke & Marnix Van Daele
Accuracy improvement with RKN methods

Manouchehr Parsaei
Coupled High Order Boundaries in Numerical Solution of Hyperbolic Equations

Alex Kolpakov
A second-order differential-finite-differences model
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Friday, 8 September 2000

Room B
Plenary Lectures

8.30 — 9.20 Willem Hundsdorfer
Splitting with Stabilizing Corrections
10.10 David F. Griffiths & I. Garrido & B. Ayuso
Mixed finite element models: instability and its consequences
10.10 — 10.30 — Break —
10.30 — 11.20 Gerhard Starke

Galerkin Least-Squares Methods for Parabolic Problems: Adaptivity in Space
and Time

11.20 — 12.10 Gerald Warnecke
Multiscale Problems in Numerics for Hyperbolic Conservation Laws

12.10 Concluding Address

9.20
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4 Abstracts of Plenary Lectures

Post-projected methods for index-2 DAEs
Philippe Chartier & R.P.K. Chan & A. Murua
(INRIA, Campus Universitaire de Beaulieu, RENNES, France)

A new projection technique for Runge-Kutta methods applied to index-2 differengi@bedic is
presented in which the numerical approximation is projected only when an outmefused. It
is shown that for methods that are strictly stable at infinity, the order ofergewce is unaffected
compared to standard projected methods. Gauss methods, for which this techrafjgpasial
interest when some symmetry is to be preserved, are studied into mote detai

Variable Stepsize Extension of Multistep Formulas - A Review and new Aproaches
Claus Fihrer & Carmen Arevalo & Monica Selva
(Lund University, Centre of Mathematical Sciences, Sweden)

Multistep methods are classically constructed by specially designesteatitfe operators on an
equidistant time grid. To make them practically useful, they have to be mesieed by varying
the step size according to some error control algorithm. It is well known hextemd Adams and
BDF formulas to a variable step size formulation. In this talk we wsladiss various possibilities
to extendk-step methods of ordér+ 1 in general. We will start from ideas developed by Skeel in
the 70s and present some new results and approaches.

Mixed finite element models: instability and its consequences
David F. Griffiths & I. Garrido & B. Ayuso
(University of Dundee, UK)

This talk will address several issues relating to stability of mifkeide element approximations of
elliptic systems. We will extend recent work of BabuSka and Narasinoinaa one-dimensional
problem and give simple proofs establishing the relationship between instabilite BabuSka—
Brezzi sense and rates of convergence. This model also allows dlsarations of different stabi-
lization techniques and their effects on convergence rates.

The second part of the talk will focus on mixed finite elements for the StokesiensiaWe shall
look at the way in which the one-dimensional results may be interpreted ingtiisgs on the
influence of boundary data in unstable situations as well as the relationship béhwesprectra of
continuous and discrete operators associated with questions of stability.

Exponential integrators
Marlis Hochbruck
(Mathematisches Institut, Heinrich-Heine UnivegsiDisseldorf, Germany)

An alternative to implicit methods for solving large systems of stiff or ltettairy differential equa-
tions is using exponential integrators. In contrast to implicit schemes, ndasohit nonlinear
systems of equations is required; only function evaluations and matrix vector psosltictthe
Jacobian. In this talk we intend to give an overview on several variarspafnential integrators.
We start from a general purpose code constructed for the solution of large systemme-of t
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dependent differential equations. The basic idea of our exponential integrators i#et@ sybical
prototype of differential equation exactly. For instance, the general purpose cogiaieseaffine
linear equationg’ = Ay + b exactly. The implementation requires approximating the product of
a matrix function, in this case an exponential function, and a vector. In our cadiedhls Krylov
subspace methods are used for this task.

For special applications leading to oscillatory problems (e.g. second-ordeaediftd equations

in which high-frequency oscillations are generated by a linear part, and Sehedddquations
with time-dependent Hamiltonian) we show that suitable exponential integrditossteme steps
much larger than the inverse of the highest frequency and we present converggiitewhich

are independent of the smoothness of the solution.

Splitting with Stabilizing Corrections
Willem Hundsdorfer
(CWI, The Netherlands)

In this talk several splitting methods are discussed that are basedole$tg Corrections, lead-
ing to splitting schemes with internal consistency for initial-boundary vphablems for PDEs.

Due to the internal consistency, given boundary data can be used directly imémeand steady
states of the PDE remain steady states of the numerical scheme.

The most simple method of this kind consists of combinations of Euler and TrapezoidatRps.

For the heat equation with dimensional splitting these methods are relatedsiwal ADI schemes
of Douglas, Gunn and others. In this talk more general splittings for convectifusidifi-reaction

eguations are considered.

To obtain more accuracy and a better treatment of explicit terms seseaisions of the simple
Stabilizing Correction scheme will be regarded and analyzed. The relewérthe theoretical

results is tested for convection-diffusion-reaction equations.

Construction and Implementation of General Linear Methods for Ordinary Differential Equa-
tions

Zdzislaw Jackiewicz

(Arizona State University, USA)

In the first part of this lecture we will give the overview of different appleegcto the construction
of diagonally implicit multistage integration methods for both nonstiff and stifédential systems
of ordinary differential equations. The identification of high order methods with apptefsta-
bility properties requires the solution of large systems of nonlinear equations fooeffecients of
the methods. For low orders these systems can be generated and solved by syiatiplitation
packages such as MATHEMATICA or MAPLE. For moderate orders these systamisecgen-
erated symbolically in FORTRAN format and then solved by algorithms basede homotophy
appoach such as PITCON, ALCON, or HOMEPACK. For high orders the approach tmthe
struction of such methods is based on the computation of the coefficients of thaystabdtion
by a variant of the Fourier series method and then solving the resulting largensyst polyno-
mial equations of high degree by least squares minimization with the aid of MIKRubroutines
based on Levenberg-Marquardt algorithm. Using these approaches both explicipdiod meth-
ods were constructed up to the order eight with good stability properties (Rungeskaltility for
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explicit methods A-stability andL-stability for implicit methods).

In the second part of this talk we will address different issues relatédetamplementation of
general linear methods. They include selection of initial stepsize anéhgtaelues, computa-
tion of Nordsieck representation, efficient and reliable estimation ofdtted discretization errors
for nonstiff and stiff equations, step size ond order changing strategies, caiostrofcontin-
uous interpolants, and updating vector of external approximations to the solution. Exgsrime
with variable step variable order experimental Matlab codes for both nbastifstiff differen-

tial systems on interesting test problems will be presented and compatedppropriate codes
from Matlab ODE suite. These experiments demonstrate the high potential of diggommicit
multistage integration methods, especially for stiff systems of diffexkaquations.

Validated Methods for IVPs for ODEs
Ken R. Jackson& Ned Nedialkov
(Computer Science Dept., University of Toronto, Canada)

Compared to standard numerical methods for initial value problems (IVPs)dwraoy differential
equations (ODESs), validated methods have two important advantages: if theyaesolution to a
problem, then

1. the problem is guaranteed to have a unique solution, and
2. an enclosure of the true solution is produced.

We survey validated methods for the numerical solution of IVPs for ODEs, idess#veral meth-
ods in a common framework, and identify areas for future research.
Papers on which this talk is based can be fountattgt//www.cs.toronto.edu/ krj

On quasi-linear PDAE’s with convection
Wenfried Lucht
(Martin-Luther-Universiat Halle-Wittenberg, Germany)

In the lecture, some aspects of systems of partial differential algedmjaetions (PDAES) for of
guasi—linear type with convection terms,

Auy + Bug, + Clulu, + Du =f(t,x), tel,:=(0,t.), t.>0, z€QCR,

will be discussed.u and f are of typeu, f : I, x Q@ - R*, n > 1, wheref (supposed to be
sufficiently smooth) is givenA, B, C[u] and D are real(n, n)—matrices where, for simplicity,
A, B andD are assumed to be constant. All matrices may be singulard biit = 0 (in partic-
ular, there is at least one time derivative of a component of the system).C[u] may depend
onu. Furthermore, it is supposed that thereis R" such thatC[z] # 0 (i.e. there is at least
one derivative of first order with respect toof some component af). Typically, whenC'|u]

is linear inu, the vectorC[u|u, describes physical convection. Terms of this form appear, e.g.,
in (one—dimensional) models based on continuum mechanics. An example used fatitinstr
comes from plasma physics where= 4 andrank(A) = rank(B) =2, rank(C(z)) =3.

For systems given above we consider initial boundary value problems (IBVRE)S¢w# (0,1))
and initial value problems (IVPs) (with = R). In both cases appropriate initial values written in
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the form u(0,z) = ®,(x) + Pc(z), = € Q orz e Q, must be added, and for IBVPs, boundary
values of a similar formu(t,x) = U, (¢t,z) + V.(t,z), te€l, x€ 09, areneeded. The data
which can be prescribed arbitrarily aredr), ¥,. The consistent data are collectedbn ..

First, the problem of determination of indexes of the PDAE is discussed. Sinoestheds of lin-
ear PDAEs (based on Fourier and Laplace transformations) cannot be apphed™DAE given,
we determine the index by means of the invertibility of certain differéope@rators. The method
is illustrated by the PDAE from plasma physics.

Furthermore, some methods for the numerical solution of IBVPs by means of finikeedities
are developed. First, a functional iteration for a semidiscretizatioheoystem with time index
vy = 1 is considered. It is shown by a fixed point argument that the method converges under
definite assumptions. However, the convergence is only local in time. Secenchngider the
numerical solution of IBVPs or IVPs by means of operator splitting methods combiitiedae-
torizations. These methods are generalizations of fractional step techniglidsxawn for the
numerical solution of classical time dependent partial differential equati@nsong others, the
splitting methods are investigated for PDAEs with indexes- 1. Some theoretical results con-
cerning stability are given. The more difficult cage= 2 is also mentioned.

In the last part of the lecture some results of numerical experiments aenpeds

On properly formulated differential-algebraic systems
Roswitha Marz
(Humboldt-Universit zu Berlin, Institutfir Mathematik, Germany)

Beyond the scope of the formal integrability theory, an equation

f@'(t), x(t), 1) (1)

with an everywhere singular leading Jacobjg(y, z, ) is somehow inaccurately formulated. A
priori, neither an appropriate function space which the solutions should belong to nort®per
of the respective map representing the equation emerge from this. Howesrking on possible
generalizations such as PDAEs and control problems with (generalized) DAEsbntrolled one
should clear up the fundamental background rigorously.

Equations of the form

F((Dz)'(), x(t),t) = 0 (2)

with well-matched matriceg, (y, z,t) and D(t) are said to be properly formulated DAEs. The
matrix function D precisely figures out all those derivatives of the unknown function that are
actually involved in the equation. Naturally, a solution should be a continuousduangti having

a continuously differentiable pafDzx)(.).

Note that there is no need at all fbx(¢) to be a projector matrix. However, previous reformulations
of (1) like f((Pz)'(t) — P'(t)x(t),z(t),t) = 0 by means of projector functiond(t) are of type

(2).

Quasilinear equationd(t)z'(t) + b(z(t), t) = 0 are often rewritten as

(Az) () + b(x(t), t) — A'(t)z(t) = 0, 3)
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or, equivalently, in type (2) form
R(t)(Az)' (t) + b(x(t),t) — R(t)A'(t)x(t) = 0,

whereR(t) denotes a projector onto in(t).

Recent results on DAEs of the form (2) will be reported. In particular, a urgigutoach to linear
DAEs A(Dz)"+ Bx = 0 and their adjoint equation3*(A*y)'— B*y = 0 (instead ofdz’' + Bz = 0
and(A*y)" — B*y = 0 formerly) is possible now. A consequence for an optimal control problem
will be discussed.

As far as numerical integration methods applied to (2) are concerned, it wslhé@en whether
resp. why a qualitatively correct reflection of the asymptotic solution behamayrbe expected.

On the numerical recovery of holomorphic mappings and some applicationsot ill-posed
problems

Cesar Palencia

(Universidad de Valladolid, Spain)

A method for the numerical reconstruction of an analytical mapping from knowledgepoda
imate values at a finite set of nodes is presented. This algorithm is shown tdplhé Far the
numerical treatment of a variety of ill-posed problems: the backwards heaiayiuhe one side
heat equation and some problems in potential theory.

From Finite Volume Approximations to Meshless Collocation for Hyperbolic Conservation
Laws

Thomas Sonar

(TU Braunschweig, Germany)

We describe the design of essentially non-oscillatory and weighted eslyamtialoscillatory finite
volume approximations to hyperbolic conservation laws on triangular meshes. Emighagl on
the recovery process which is essential not only for high order of accuracysoutcalstability.
This class of methods is now fairly well understood from a computational point of aiéwgugh
a convergence analysis for general hyperbolic systems is still missing.

In contrast, meshless collocation methods are still in a state of infBasyc questions concerning
conservativity, order of accuracy, etc. are unanswered. However, irogmgimodern tools from
numerical analysis like nonlinear anisotropic dissipation terms and mudtianalysis of discrete
data there is hope that this class of schemes can be developed into numerical seskhdhe
near future.

Galerkin Least-Squares Methods for Parabolic Problems: Adaptivity in $pace and Time
Gerhard Starke
(University of Essen, Germany)

In this talk, a class of Galerkin least-squares methods for parabolid-pd@iandary value prob-
lems is presented and analyzed. These methods are based on the minimizatiessbtisguares
functional for an equivalent first-order system over time and space wiplece® suitable discrete
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spaces. One of the most important features of the least-squares methodologyi#-ihealpos-
teriori estimator for the approximation error. This is a consequence of thesigaates functional
to the consistency error associated with a time-step, measured ppaopaate norm. For our
presentation, we focus our attention to the specific combination of piecewise, lm& neces-
sarily continuous, functions for the flux with continuous piecewise linears for tHarsgaiable
for the time discretization. The discretization in space uses statflatd) and H' conforming
finite element spaces, respectively. A detailed convergence analysesefmethods will be given
for linear parabolic problems. Moreover, we address the problem of identifyingpthpanents
in the least-squares functional associated with the discretizationiartime and space, respec-
tively. This leads to adaptive strategies for the proper balance of tiepechbice and spatial mesh
refinement.

Multigrid dynamic iteration methods for delay differential equations
Stefan Vandewalle
(Katholieke Universiteit Leuven, Dept of Computer Science, Belgium)

The dynamic iteration method, also called waveform relaxation method, exteadgpplicabil-
ity of classical iterative methods, such as Jacobi, SOR, and multigrslystems of differential
equations. The method offers great potential for good parallel performance. It éraspelied
primarily to solve systems of equations derived by discretization of paaBBIEs. The conver-
gence theory of the method for that type of problem is nowadays well understood.

Recently, the method was applied to delay ordinary and partial differegfiadtions. Such equa-
tions arise for example in population dynamics, in numerical control, and in the stuylinear
materials with memory. Earlier work concentrated on Jacobi- and Gaeig®l type iterations. In
this talk we will concentrate on the multigrid acceleration.

First the type of equation that is considered will be defined. It will be shown tHay dRDEs
exhibit quite different stability characteristics than classicaligladifferential equations. Then,
the application of waveform relaxation and its multigrid acceleratidhbei illustrated by means
of a number of examples. Special emphasis will be put on techniques for variableieoéffi
problems. Finally, the convergence of the method will be studied by using a twbHeurier
analysis technique.

Numerical Time Integration of Air Pollution Models
Jan G. Verwer
(Center for Mathematics and Computer Science (CWI), The Netherlands)

Partial differential equations of the advection-diffusion-reaction typetlieeheart of all modern
air pollution models. These PDEs are used to describe advective transgoréimwind fields,

turbulent/diffusive transport, chemical reactions, emissions and depositionany natural and
anthropogenic atmospheric species. The equations are time-dependent, threerapasedal

and nonlinearly coupled through the chemical reactions. Numerical reseathigh relevance
since modern models require excessive amounts of computer time so that efficexnof-the-art
numerical algorithms are needed.

In this lecture we will first introduce the application field. After this oduction, several of the
most important numerical algorithms in use will be discussed, including the populatopsplit-
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ting method and a Rosenbrock method from the stiff ODE field which provides enmaiive to
operator splitting by means of approximate matrix factorization. The perfornaintese meth-
ods will be illustrated using data from a real model. If time permits weadsb discuss the Rosen-
brock method for the spherical Shallow Water Equations. The SWEs are an intganaéotype
for numerical research into atmospheric circulation.

Multiscale Problems in Numerics for Hyperbolic Conservation Laws
Gerald Warnecke
(Otto-von-Guericke-Universit Magdeburg, Germany)

There is an increased demand for numerical calculations of solutions to problededed by
hyperbolic systems of conservation laws with additional dissipative termstéhdource terms.
These type of problems arise for instance when considering inviscid flows witipwstion or
mixing multi-phase flows. These problems a characterized by the presencealy warying
length and time scales, e.g. characteristic speeds, shocks, boundary kEgetienrzones. Small
scales may only be present locally in the solution. The choice of minimal spag&t lengths and
time steps leads to a cut-off of smaller scales. Adaptive methods, hereingtrestricted to mesh
refinement only, are needed to take small scale information into accouseittda influences the
larger scales being resolved in the numerical calculation.

The talk will focus on the use of adaptive methods for overcoming well known proldeisiag

in numerical calculations. Typical unwanted features are wrong shock speetteapbearance
of unphysical states. Depending on the nature of the applications and various pridiftexent
ways of handling these problems must be considered in order to guarantee corredtcart ef
calculations. The use of mesh adaptive methods employing a posteriori emoatesti techniques
for unsteady problems is just one possible option. Substructured solvers may beraatiaéen
some instances.

A fundamental goal in numerics is to guaranéeeuracyas well asfficiency This is also what is
essentially behind the issue of stiffness. Numerical methods may become imigffigient if the
problem changes due to a small parameter. Numerics has to react to a simgutamde the limit
is reached within prescribed accuracy, whereas the underlying analytdaépr only changes in
the limit. This is where especially error estimation, stability analgsd solver adaption play an
important role.

An adaptive numerical scheme contains two main elements. The first edtion criterion
which tells us if and where we want to modify our numerical solution. This could kee@oste-
riori error indicator, a stiffness detector or a feature detector, e.g. shdatator or a symmetry
indicator. The criterion itself usually tells us very little about how waeato modify the solution
in order to overcome a detected problem. This is the second element in aivaddgorithm,
namely theadaption method There is a wide range of possibilities. We know various forms of
local or global mesh adaption. One can adapt the solution space, for instance to thedifger
of the method. One can adapt solvers, e.g. by using flux limiters or by explicitéitrghitching.
An important question is whether the adapted solution just looks good or is actualy. batt
long term goal of numerical analysis for CFD is to give us reliable criterdata link these to the
methods employed, i.e. to prove that the solution is generally improved by thevadagthod.

The theory of a posteriori error estimation using residuals is a key elemehée ofalidation of
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numerical calculations as well as useful tool in adaptive algorithms. By 'sepos’ we mean
that the information given by the estimator is calculated from the computetial Assuming
that the model equations adequately represent the physical problem, we need such artie i
to assess whether solutions to the equations are well approximated by the scedmé@/eneed
it to detect stiffness. We also need it in adaptive algorithms in ordefficently distribute the
workload in demanding calculations. Though adaptive methods based on heuristio@icatars
are highly successful in CFD, the mathematical theory is still in itanioy. The concepts are
generally inferred from the better developed theories for elliptic and pacgiralblems, where a
rigorous theory is possible.

The presentation will expand on the issues raised above and present recenhvadiptive flow
calculations as well as a solver for detonation waves that avoids wrong sh@&dssp®l spurious
physical states.
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5 Abstracts of Minisymposia Talks

5.1 Atmospheric Transport—Chemistry Problems

Unstructured Adaptive Mesh Solvers for Atmospheric Dispersion FPoblems
Martin Berzins & A.Tomlin & S.Ghorai
(The University of Leeds, UK)

It has been shown that the accuracy of solution for atmospheric pollution dispersiolems is
highly dependent on the computational mesh and in particular the degree of resolutiose Coar
meshes cannot resolve the underlying structure and uniformly fine meshes are pelfibxpen-
sive for reactive flow problems with a large number of chemical species.

A solution to this problem is to provide extra resolution of the mesh where largg@okrrors or
steep concentration gradients exist, leaving a coarse resolution elsewnénes way computa-
tional resources are utilised where they provide significant gains in accurhsytalk presents a
3-D finite volume reactive flow model based on a transient adaptive unstruchesd The use of
tetrahedral mesh elements allows fully 3-D adaptivity and the flexilidignable the code to han-
dle complex structures arising from source terms of very different ssizdés. The underlying
algorithm makes use of positivity preserving finite volume methods, fastitersdlvers, mesh
adaptation and parallel computing.

Preliminary studies of dispersion from a single source in stable, unstable atrdlrt®undary
layers have been carried out. The results show the efficiencies of usingvadgadis in order to
represent the accurate structures of the plume in the boundary layer and alscethtageof this
method compared to fixed methods for mesh refinement. Some comments about fodatider
of input data such as wind fields onto unstructured meshes are also made.

Examples will be described for a number of different pollution dispersion probleresiog a
range of meteorological conditions. Results will demonstrate that the adaptivéisocdeable of
achieving accuracy close to that of fixed high resolution meshes at a fra€tioea computational
cost.

Improving Approximate Matrix Factorizations for implicit time integrat ion in Air Pollution
Modelling

Mike Botchev & J.G.Verwer

(CWI, Amsterdam, The Netherlands)

For a long time operator splitting was the only computationally feasible way ifertime inte-
gration in large scale Air Pollution Models. A recent attractive akiéive are Rosenbrock schemes
combined with Approximate Matrix Factorization (AMF) [1]. With AMFnkar systems arising
in implicit time stepping are solved approximately in such a way that tleeadvcomputational
costs per time step are not higher than those of splitting methods [1,2].

We propose and discuss two new variants of AMF. The first one is aimed at yetrfrethetion

of costs as compared with conventional AMF. The second variant of AMF providesrtain
circumstances a much better approximation to the inverse of the lineamsystix than standard
AMF and requires the same computational work.

[1] J.G. Verwer, E.J. Spee, J.G. Blom and W. Hundsdorfer, A second order Rosenketukdm

22



applied to photochemical dispersion problems, SIAM J. Sci. Comput. 20, 456—480 (1999).
[2] P.J. van der Houwen and B.P. Sommeijer, Approximate factorization fertiependent partial
differential equations, to appear in J. Comput. Appl. Math. (2000).

Coupled integration of chemistry and transport in microscale air quality modelling
Oswald Knoth & Ralf Wolke
(Institute of Tropospheric Research, Leipzig, Germany)

We compare different time integration methods for modelling atmospheric ctmgrinensforma-
tions inside urban street canyons. The necessary wind and dispersion fieldawdegesl simul-
taneously by a microscale atmospheric fluid model with a spatial resolutioredet1-5 m or
taken as a snapshot from this model. Since the transport time scale for this apptieation is
in the range of 1 second integration schemes proposed for mesoscale or long rangettraag
be not appropriate. We will focus on low order implicit methods with an iteeagmution of the
resulting linear systems. Depending from the time scales and stiffneke different processes
involved the use of approximate Jacobian matrices is investigatedldPamgllementation aspects
are discussed.

Partitioning techniques for decoupled integration of chemical reacton equations
Stig Skelboe
(University of Copenhagen, Denmark)

The chemical reaction equations are often partitioned into subsystems ta pesra efficient
numerical solution. A partitioned system can be solved using various stiatgih as the Euler
Backward Iterative method (block Gauss-Seidel) or waveform relaxation.

While these methods iterate until convergence and therefore give idensialisr® the underlying
integration formulas, the decoupled implicit Euler and BDF2 methods presentied talk avoid
the relaxation until convergence. This strategy is, in general, moreeeiffithan the two above
mentioned methods or classical implementations. However, a poor partitioifgppardize the
accuracy or even the stability of the discretization.

This talk presents partitioning techniques which permit the use of just one or laxatien itera-
tions in the decoupled integration formula while maintaining accuracy andistabil

The partitioning techniques and decoupled implicit integration formulas will beodstrated for
a system of 56 chemical reaction equations in an air pollution model.

Simulation of aqueous-phase chemistry in Air Pollution Modeling
Bruno Sportisse& Rafik Djouad
(ENPC- CEREVE, France)

Regional Air Pollution Models describe the time and space evolution of somegases through
Reaction-Diffusion-Advection PDEs subject to appropriate Boundary Conditions.

We describe here the simulation of aqueous-phase chemistry. The interfanifet between
gaseous and aqueous phases has indeed to be taken into account since this may stuamglyg infl
the concentrations of gas-phase species.

We focus on numerical and mathematical issues: what is the validity of theeldirparameter
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assumption (due to the large values of molecular diffusivities) ? How to séseet of coupled
stiff ODEs ? How to reduce this system ? What is the sensitivity wrt someigdiysrameters
(such as the radius of aqueous droplets) ?

Time-Integration of Multiphase Chemistry in Size-Resolved Cloud Mbdels
Ralf Wolke & Oswald Knoth
(Institute of Tropospheric Research, Leipzig, Germany)

An important subject of atmospheric chemistry is to assess with moresaydine role of clouds on
pollutants. The existence of cloud drops leads to a transfer of chemical spdwiesibéhe gaseous
and aqueos phases. Species concentrations in both phases are modified by chactimas @nd
by this phase transfer. The model equations resulting from such multiphase dreysteans are
nonlinear, highly coupled and extremely stiff depending on the time of the day. In the wape
investigate several numerical approaches for treating such proce$sedroplets are subdivided
into several classes. The very fast dissociations in the agueous—phasstchanei treated as
forward and backward reactions. The aqueous—phase and gas—phase chemistrys thensfas
between the different droplet classes among themselves and with the gasaphasegrated
in an implicit and coupled manner by the second order BDF method. For this part weapply
modification of the code LSODE with an adapted step size control and a spee@l system
solver. This direct sparse solver exploits the special structure of the eqsiatrurthermore we
investigate an approximate matrix factorization which is relateopgrator splitting at the linear
algebra level. The sparse Jacobians are generated explicitly and staesparse form. The
efficiency and accuracy of our time—integration schemes is discussed for tittiyphmase chemistry
systems of different complexity and for a different number of droplet classes.

Large-scale computations in air pollution modelling
Zahari Zlatev
(National Environmental Research Institute, Roskilde, Denmark)

Air pollution models are described mathematically by systems of partitdrdiftial equations
(PDEs). By using different discretizations of the spatial derivatives different splitting tech-
niques, the systems of PDEs are reduced to several large systems of ordieaential equations
(ODEs), which have to be treated numerically at every time-step niliheer of equations in ev-
ery ODE system is equal to the product of the number of grid-points and the number of chemical
species. This number is normally very large; up to several millions. Ifithe-interval is long,
then the number of time-steps is also very large; up to several thousandsy, Riraay scenarios
with different values of some key parameters have to be run. This explaindwlugé of efficient
numerical methods and parallel computers is crucial in the treatment ofdaade air pollution
models. The choice of the numerical methods and the organization of the parallel coomsuta
will be discussed in this talk.
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5.2 Partial Differential-Algebraic Equations

Distributed time integration of coupled differential-algebraic systems
Martin Arnold
(DLR German Aerospace Center, Vehicle System Dynamics Group OberpfaffeGerfeany)

The termpartial differential-algebraic equatioffPDAE) summarizes various types of coupled
instationary differential equations (ordinary and partial differential éqnaf differential-algebraic
systems). The increasing interest in the analysis and efficient numsoicgion of such coupled
systems is mainly motivated by complex technical applications that redpgi@oupled simulation
of qualitatively different physical phenomena.

Typically the overall system consists of a (small) finite number of subsystieatsare coupled
by source terms and/or boundary conditions. The numerical solution of PDAESs combines space
discretization (performed, e. g., by FEM or FDM) and time discretizationthé talk we focus
on thetime integration of the coupled system that may be based on a coupling of standard time
integration methods for the subsystems.

In this modular approach the time integration for the overall systesistsibutedto several sep-
arate integration methods for the individual subsystems. Classical techniqueshi theory of
ordinary differential equations are the use of different time steps in diffexgbsystems (multi-
rate approach), the coupling of different time integration methods (multi-methodach), and
the iterative refinement by waveform relaxation or dynamic iteration methods

In the application to more complex coupled systems like coupled differaaifjabraic systems
or PDAEs these classical techniques may, however, result in exponentadiiig Additional
projection steps may be necessary to satisfy scoméractivity conditionghat guarantee stability
and convergence of the distributed time integration.

The results of the error analysis are applied to the dynamical simulation of coonaehanical
systems.

Generalized descriptor formulation in electrical network analysis
Michael Glunther
(Universitt Karlsruhe (TH), Fachbereich Mathematik, IWRMM, Germany)

To cover parasitic and second order effects in network analysis, a relffasedption based on mod-
els of partial differential equations can overcome problems due to higher anchbigphdescriptor
formulations, which are caused by coupling controlled sources of arbitrary type aisatz gen-
eralizes the descriptor formulation to initial-boundary value problems of coggktdms of partial
differential (PDEs) and differential-algebraic (DAEs) equations, farssystems of partial differ-
ential algebraic equations (PDAE systems). With interconnected elaatircuits as an example
in mind, we analyze the analytical properties of these systems with regpexistence, unique-
ness and sensitivity. Connections can be derived to dynamic extended saddle-poarhpratth
constraint currents in the role of Lagrangian multipliers. Generalizinggheepts of perturbation
index for DAEs and a-priori estimates for PDEs, we can analyze the impaenhufliscretization
on the approximate DAE systems. We will see that some companion models foomtents,
which can be regarded as a-priori non-adaptive semidiscretizations \sfhateto space, lead to
an artificial deregularization or regularization, resp., of the underlying PB/Eem.
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Adaptive Multilevel ROW-Methods for Nonlinear PDAES
Jens Lang
(Z1B Berlin, Germany)

In this talk, we concentrate on nonlinear PDAEs which can be written in tine for
B(z,t,u)0u =V - (D(x,t,u)Vu) + F(x,t,u, Vu)

with suitable boundary and initial conditions. The vector—valued solutien(uy, . .. ,u,, )T is
supposed to be unique and temporally smooth, at least after an initial traqiase. In order to
solve such systems efficiently, an adaptive algorithm is proposed, whergylimeglicit methods

of Rosenbrock—Wanner type in time are coupled with multilevel finite elemessace. A poste-
riori error estimates are used to assess the local discretizatmns @nd to choose time steps and
mesh sizes automatically during the integration.

Practically relevant applications that arise in today’s semiconductor-a&@ificication, fluid dy-
namics, and porous media modelling are presented to illustrate the perforofaheeproposed
method.

A boundary value problem for linear PDAEs
Wieslaw Marszalek
(DeVry Institute of Technology, USA)

We analyze a boundary value problem for linear partial differential algebrai¢ieqsgor PDAES,
by using the method of separation of variables. The analysis is based on the KaeWakrstrass
form of the matrix pencil4, —\,, B]. This BVP PDAE problem differs in many ways from the con-
ventional BVPs considered in the literature on DAEs. A new theorem is pranvetvo illustrative
examples are given.

Control of heterogeneous systems of partial and differential algebraic systes.
Volker Mehrmann & Thilo Penzl & Fredi Troltzsch
(Fakult. f. Mathematik, TU Chemnitz, Germany)

We consider control problems for generalized state-space systems
Ei(r) = Ax(7) + Bu(r)

with output equation
y(r) = Cua(r)

arising from the semi-discretization of heterogeneous systems of partekdifial equations and
algebraic equations.

HereE, A € R™", B € R™™,andC € R?", are large and sparse , and the input/output dimensions
m andq are small.

We use model reduction techniques based on the balanced truncation method tostealleseale
model from which we compute the optimal feedback control and then use this feedback font
the large scale problem.
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The necessary Lyapunov equations are solved iteratively and approximataky loywtrank cyclic
Smith method which is justified by the large decay of the singular values of théaobf the
Lyapunov equation.

Involution Analysis of Semi-Discretisations of a Class of Linear Partial Dfferential Systems
Werner M. Seiler
(Universitait Mannheim, Germany)

We study a class of non-normal, linear, first order systems of partial diffeteguations. Typ-
ical representatives consist of a hyperbolic evolution system and somecetigristraints (like
Maxwell’s equations of electrodynamics). We compare the completion to inwalofithe origi-
nal system of partial differential equations with the completion of diffee¢aligebraic equations
arising from it by semi-discretisation. Somewhat surprisingly, it turns loat the condition for
involution are the same in both cases. Thus the stronger concept of involution andtrfotmal
integrability (i.e. the absence of integrability conditions) is decisive fomilmaerical integration
of general systems of partial differential equations.

A weak descriptor form for constrained motion in elastodynamics
Bernd Simeon
(University of Karlsruhe, Germany)

Constrained mechanical systems including both rigid and elastic bodies angseofaturrent re-
search in computational mechanics. They meet the increasing demand fod efmedation in
vehicle dynamics, robotics, and in air- and spacecrafts. While rigid bodres dliscrete sys-
tems in space and are easily modelled by differential-algebraic equaheirselastic counterparts
satisfy the partial differential equations of elastodynamics. Mutual coupdirgdcomplished by
constraints formulated for isolated spatial points or parts of the boundary.

The talk presents a general framework for the treatment of constraintsstoéynamics and in-
troduces the notion ofweak descriptor fornwvhich comprises both rigid body systems and mixed
systems and which can be considered as a descriptor form model in both spacaantith
respect to space discretization, there is a connection to mixed and hybedefiement methods
and to domain decomposition techniques. Using these techniques, a convergence pitof for
space discretization is given.

5.3 Parallel Methods for Differential Equations

Blended Block Implicit Methods for the Numerical Solution of ODEs
Luigi Brugnano & Cecilia Magherini & Donato Trigiante
(Universit di Firenze, Italy)

Currently, a great variety of numerical methods for differential equatioaggable. In particular,
when dealing with the numerical solution of stiff problems, there are a lotadiiest high order
methods. As a consequence, the definition of new methods is relevant only if they dogmsdes
features for their actual implementation. In such a category, for exangllenény families of
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Runge-Kutta methods and, more recently, Block BVMs. A more recent instangktamed by
considering a suitable "blend” of (possibly different) block methods [1,2], for whichtarala
nonlinear splitting is defined. In the talk, some of the most recent results comgéinis approach
are presented, which seems to be promising, even for the construction of |sniakes.

References

[1] L.Brugnano. Blended Block BVMs: A Family of Economical Implicit Methods for B
JCAM 116 (2000) 41-62.

[2] L.Brugnano, D.Trigiante. Block Implicit Methods for ODEs, in "Recent Treruslumeri-
cal Analysis”, L.Brugnano and D.Trigiante Eds., Nova Science, 2000, (to appear).

Parallel PC iteration of pseudo RKN methods for nonstiff initial-value problems

Nguyen Cong& Nguyen Thi Hong Minh

(Faculty of Mathematics, Mechanics and Informatics, Hanoi University of SciencelN§@yen
Trai, Thanh Xuan, Hanoi, Vietham, Vietham)

This talk discusses parallel iteration schemes for pseudo RKN for solvirgasgecond-order
nonstiff initial-value problems. By using pseudo RKN methods as correctoresh#ing parallel
PC Methods can be well provided with high-order predictors without additional costsegquire
for a given order of accuracy, less computational efforts, less number of pposeg®en compared
with the parallel PC iteration process applied to classical Gaugsridre RKN correctors.

Parallel Extended BDF Methods
Jason Frank & P.J. van der Houwen
(CWI, The Netherlands)

The extended backward differentiation formulas (EBDFs) for solving ordinafgrdiitial equa-
tions were introduced in the 1980s by J. Cash. These methods are stiffly accancatestable
methods are known to exist up to order 6. Furthermore, recent experience witfeliset for
Initial Value Problems’ shows a variable stepsize variable order metrsstilman the EBDFs to be
quite efficient compared to other popular methods from the literature. We havedstudumber of
possible modifications to these methods which make them suitable for implemematshared
memory parallel computers.

As originally formulated, the EBDFs area general linear methods(GLMs) havdimger triangular
coefficient matrixA. In the serial case, a desirable propertylag a constant diagonal entry, since
this allows reuse of the iteration matrix in all stages. From the miadiint of view, the defective
spectrum ofA precludes diagonalization, the standard approach to parallelizing GLMs. In our
investigations we consider two alternatives: (1) iterating with an @ppration to A which is
diagonalizable, and (2) reformulation of the EBDF methods on a staggered grichstichdoes
have a complete spectrum.

Tests with these methods using a fixed stepsize code indicate that a reaspesulap can be
obtained in parallel on 3-4 processors.
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Generalized Backward Differentiation Formulae for parallel implementation
Francesca Mazzia& Felice lavernaro
(Dipartimento di Matematica, Universitdi Bari, Italy)

Generalized Backward Differentiation Formulae (GBDFs) are as@&Boundary Value Methods
that numerically solve the: dimensional Initial Value Problems

{ y'(t) = f(ty), t € [to, to + T,
y(to) = Yo

by means of the following nonlinear system

(A4 ® L)Y "™V 4 (A © L) Y™ — h(Iy @ L,) F(Y™) = 0,

whereA; andA, are square matrices of dimensidin 5, s = N, m, is the identity matrix of size,

h is the stepsize of integratio,™ = (3\™, ... 4%)T andY "~V contain the approximations to
the true solution computed at stendn—1 respectivelyF (Y ™) = (£, 4\™), ... Ftw, yn))"
andb™ depends on the solution computed at step 1.

By definition GBDFs are L-stable methods; giving to the matridgand A, a suitable structure
(e.g. block-diagonal), we obtain A-stable (Atable) methods that achieve an high degree of
parallelism. In finite precision arithmetic, the ill-conditioning of a matelated to the method
may destroy its convergence properties, giving rise to loss of accuracy dsatoration threshold;

this question is also faced.
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Experiments with parallel methods for ODEs
Dana Petcu
(Western University of Timisoara, Romania)

We study from a practical point of view the issue of applying parallelism acro#soghé solving

initial value problems for ordinary differential equations. Three computatianat@ments are
considered: a parallel computer with distributed memory, a cluster and kstabon network.
Two different numerical ODE solving tools are used: EpODE (ExPert systemD&sQavailable
at http://www.info.uvt.ro/~ petcu) and D-NODE (ODE solver based on a distbusgsion of
Maple) both allowing parallel and distributed computations. We benchmaekadinown parallel
methods, with accent on Runge-Kutta type methods. Test ODE systems are denmectal

problems (like semi-discretized convection-diffusion problems). The gaalmest is twofold: to
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investigate to what extent the theoretical parallelization can be\athie practice, and to compare
the code performances on parallel computers relative to those on distrilowtszhenents.

Numerical Experiments with parallel Two-step W-methods
Helmut Podhaisky & Bernhard A. Schmitt & Riudiger Weiner
(Martin-Luther-Universiat Halle-Wittenberg, Germany)

We present numerical experiments on a shared memory machine for the restntlyced class
of parallel two-step W-methods. These methods are especially designedyiostdf ODE sys-
tems. For small test problems where the linear equations in the stages cawdoday LU decom-
position we compare our methods with the parallel method PSIDE.

For the solution of large semidiscretized parabolic test problems we discussebiods with
Krylov approximation and compare our code with the sequential Krylov-code VODPK.

On the stability of two-step-W-methods
Bernhard A. Schmitt & Rudiger Weiner & Helmut Podhaisky
(Universitat Marburg, Germany)

Two-step-W-methods for stiff initial value problems possedmearly-implicit external stages
which may processed in parallel. The stability analysis of these method® likesl with the
difficulty that additional recursions for the stages are used besides the one f@ptioximate
solution, similar to general linear methods. Hence, the stability functiohede methods is a
matrix function even for scalar problems. In this talk we discdsstability in a strong sense by
constructingG-norms in which the stability matrix of certain methods is bounded by one in the
left complex halfplane for scalar problems. By the von-Neumann theorem this boures$ caver

to norm estimates for linear dissipative systems of ODEs. With respéog notion ofL-stability,

on the other hand, it is preferable to apply certain restrictions to the solchimponent of the
recursion only.
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6 Abstracts of Contributed Talks

The Pascal matrix and its relations with numerical methods for ODEs
Lidia Aceto
(Universit di Firenze, Italy)

The Pascal matrix has been known since ancient times, and it was mento@éthese math-
ematical texts dating from 1303. Nevertheless only recently it has beefulbasgudied (2],

[4], [5], and[6]). Such matrix arises in probability, numerical analysis, surface récmi®n,
and combinatorics; we came across it while studying stability properties ofnreahmethods for
solving ordinary differential equatiorj&]. In this talk we present some of the nice properties of
the Pascal matrix and show how it is related to other matrices atst@dh great names such as
Vandermonde, Stirling, etc.. Moreover, we shall consider the existingoetatietween this matrix
and the following classes of methods: Generalized BDF (GBDF), GAMs amsE3].
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A linearly implicit one-step time integration scheme for second ordenonlinear hyperbolic
equations

Mansour A. Al-Zanaidi & M. M. Chawla

(Department of Mathematics and Computer Science, Kuwait University, Kuwait)

We present a linearizelthearly implicit version of the well-knownf(nctionally implici) New-
mark method for initial-value problems for second order ODEs; the lineanzeithod has the
same local truncation error and stability properties as the Newmark mettimthen employ the
linearized method to obtain a linearly implicit one-step time integrasicheme for second order
nonlinear hyperbolic equations;; = c?u,, + p(z,t, u); the resulting scheme is unconditionally
stable and it obviates the need to solve nonlinear systems at each time stéggration. We
demonstrate the computational performance of the linearly implicit scheme faneanODEs
and for nonlinear hyperbolic equations, including the sine-Gordon equation.
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Unitary Coordinate Partitioning for General DAE Integrators
Carmen Arevalo & Steven Campbell
(Universidad Simon Bolivar, Venezuela)

Many physical problems are most easily initially modeled as a nonlinearaingyistem of differ-
ential and algebraic equations (DAES),

f(a',z,t) =0

with f,, = 0f/0z' identically singular. Many of the problems in constrained mechanics are ini-
tially formulated as index two and three DAEs. However, DAESs of indexougx naturally occur
in mechanics if actuator dynamics, joint flexibility, and other effects meckided.

Numerical methods for DAEs based directly on classical approaches reupiitbé systems have
special structure, such as being a mechanical system with holonomic cosstrdiaie indices of
only one or two. There is a need for more general higher index DAE integrators. Threa/eam
related constraint preserving approaches have been proposed for general highe AilEdekiEre
we examine the Implicit Coordinate Partitioning (ICP) approach. In particslarexamine how
to chose a good local coordinate system. In Unitary Coordinate Partitioning ({iSH#3 done by
orthogonal transformations as opposed to permutations.

We see this approach as being especially useful in the early stages of desigmalation when
various computer generated models are being used to investigate system behawithralso
be useful as a truth model for investigating other integration methods and theywafi various
simplified models.

Newton-Type Method for Solving Non-regular Equations
Vadim Azhmyakov
(EMA University of Greifswald, Institute of Mathematics and Computer Scie@GaFmany)

Newton methods are widly used for receiving the approximate solutions for difigrend dif-
ferential-algebraic equations in Hilbert space. We consider nonlinear opecatations with ex-
panding left-hand side. For such systems the problem of searching the zero salatxamined.

We assume in addition that the Frechet derivative of operator is singularxigbenee of solution

for operator equations with expanding operators is proved.

A new quadratically convergent method is introduced for differential equatiohkBllnert space

with nonregular, expanding right-hand side. The obtained Newton-type method is theitheoret
cal basis for effective numerical procedures for solving the differentialdfiferential-algebraic
equations.

Transfer equations and linear boundary value problems for DAEs
Katalin Balla
(Computer and Automation Research Institute, Hungarian Academy of Sciences, Hungary)

As it was proven recently by R. Marz and the author, an index equal to 1 or benagsigned to
the implicit differential equation of the form

AlCx) + Dz =f, (x)
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provided the matrix functionst, B : I — L(R") are well-matched od and together with

D : I — L(R") have sufficient (low) smoothness. It was shown that a homogeneous equation
(*) (f = 0) and its properly defined adjoint equation are solvable simultaneously [1]. These
results allow considering the transfer of boundary conditions with some invaffaoperties of

the transfer equation and its use in BVP will be discussed.

[1] K. Balla, R. Marz: An approach to linear differential algebraic doqures and their adjoint
equations in a unified waylanuscript

Numerical verification of delay dependent error estimates for WRM for differential-functional
equations

Zbigniew Bartoszewski

(The Faculty of Applied Physics and Mathematics, The Technical University of GdRotaid)

In the paper there is given a numerical illustration of the theoretical teepuésented by M.

Kwapisz in his talk given at this conference. The theoretical results begg tested on a num-
ber of examples and it was observed a good agreement between the theoraiicattmates

and numerically obtained results despite the fact that numerical reafizdtwaveform relaxation

methods introduces discretization errors.

A Partial Differential-Algebraic Equations Approach for Elastic Rods
Brahim Benhammouda
(United Arab Emirates University, UAE)

The equations of motion of inextensible elastic rods form a system of partialatiffal-algebraic
equations (PDAESs) of index three. Elastic rods are used to model many prgcbblems such
as solitons or DNA loops. A semidiscretization of these equations yields a sp$uifferential-
algebraic equations (DAESs) of index 3. Such DAEs are known to cause serious difficulties for
numerical integration methods.

In this paper, we describe a new index reduction technique to lower the index freentthone
while preserving all constraints. The resulting index-1 PDAE system isealized in space by
Galerkin method to lead to an index-1 DAE system for the coefficients of therkda solution.
This system can be integrated in time efficiently by DASSL.

Stability in the numerical solution of the heat equation with nonlocal boundary conditions
Natalia Borovykh
(Mathematical Institute, Leiden University, The Netherlands)

In this talk we deal with numerical methods for the solution of the heat equatittmimiegral
boundary conditions. Finite differences are used for the discretization in.sfdwe matrices
specifying the resulting semi—discrete problem are proved to satisti@arise resolvent condition,
uniformly with respect to the discretization parameter.

Using this resolvent condition, unconditional stability is proved for the fully réigcnumerical
process generated by applyidgf) —stable one—step methods to the semi—discrete problem. This
stability result is established in the maximum norm; it improves somequsvesults in the liter-
ature in that it is not subject to various unnatural restrictions which wepesed on the boundary

33



conditions and on the one—step methods.

Avoiding the order reduction of Runge-Kutta methods for linear initi al boundary value prob-
lems

Mari Paz Calvo & Cesar Palencia

(Universidad de Valladolid, Spain)

A new strategy to avoid the order reduction of Runge-Kutta methods when integiatag ku-
tonomous, non-homogeneous initial boundary value problems is presented. The solution is de-
composed into two parts. One of them can be computed directly in terms of thardbtiae other
satisfies an initial value problem without any order reduction. This idea agpli@sctical prob-

lems, where spatial discretization is also required, leading to therfudlr both in space and time.
Numerical illustrations are given.

Low-order SDIRKS for DAEs
Frank Cameron & Mikko Palmroth & Robert Piché
(Pori School of Technology and Economics, Finland)

Our purpose is to design and test low-order integrators for the class of immpdiek 1 initial value
DAE problems typically represented by

F(y', y,t) =0, y(to) =vo, ¥'(to) =y

wherey : R — RY andF : RY x RY — R" [2]. We study SDIRKs because their ease of
implementation makes them attractive for use in software for sinmgja@ngineering processes,
for which low-order methods often suffice. Our design goal is an embedded SDIRKvipiai
local orders 4(3) together with an interpolator and a predictor for providingregarélues to the
iterative method used to solve the nonlinear stage equations. We introduce sontégs aje to
stage-order that can be used with SDIRKSs to reduce the number of order conditionsdgtdab
be explicitly handled. In addition to order conditions, our SDIRK design also tatesaccount
stability, truncation error coefficients and some measures of errorastiquality. We present
several new SDIRKs. Numerical tests are presented comparing diffsedictors and comparing
our SDIRKSs with the Radau IIA method from Hairer and Wanner [1, pg. 74,123].
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A posteriori error estimation for evolutionary dissipative equations
Javier de Frutos & Julia Novo
(University of Valladolid, Spain)

In [2] we introduce a postprocess of the spectral element method for time-depersiepatire
two dimensional equations.

In this talk we will show that the postprocessed method can be used as anreopicst®r estima-
tor for evolutionary dissipative equations [1]. More precisely, we will shoat the error achieved
using the spectral element method can be accurately estimated by taéctial? or H* norm of
the difference between the spectral element approximation and the postpdoappsaximation
that can be obtained f rom it. The postprocessed method, used as an a posteriestamator, re-
veals itself not only cheap and easily computable, but also able to givealodgllobal information
on the error of the numerical solution.

[1] M. Ainsworth & B. Senior,Aspects of an adaptivep finite element method: Adaptive strategy,
conforming approximation and efficient solve@omput. Methods Appl. Mech. Engrg., 150
(1997), 65-87.

[2] J. de Frutos & J. NovaA postprocess based improvement of the spectral element mAihad
Numer. Math., 33 (2000), 217-223.

Numerical behaviour of stable and unstable solitary waves
Angel Duran & Miguel A. Lopez Marcos
(University of Valladolid, Spain)

Classical analysis of numerical methods for integrating time-dependenteditii@r equations is
based on the search of small approximations errors. However, a numeheaiescan have many
other important properties. In particular, conservation properties would be gouateAlmost ev-
ery problem possesses physical quantities such as mass, energy, etc thmatoaistant during the
evolution of the system. It is not always true that these quantities keepantéirough numer-
ical integration. Then, we can distinguish between conservative and noncdiv&enwamerical
methods.

On the other hand, conservative integrators reveal successful for the nunmteigeation of cer-
tain class of solutions. In this talk we study this situation in the case n&spWave problems for
the gRLW equation. This equation has a remarkable property: the stability of the shagtany
wave solutions depends on their velocity. We pretend to describe the differenidnghaf the
numerical approximations by using conservative and nonconservative methods, depertimg on
velocity of the wave.

Integration of Index-One Differential-Algebraic Equations using Dichotomically Stable One-
Step Formulae

Roland England & René Lamour

(The Open University, UK)

The first author has previously established the need for dichotomic stability vahangs stiff
boundary-value problems (BVPSs) in ordinary differential equations (ODESs) psitmntially sharp
boundary layers at each end of the interval. He has implemented a dichotorstedlly implicit
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Runge-Kutta method, of order 4, in a variable step-size initial-value intag(@YMIRK). The
3-stage Lobatto IIIA method may be written as a single formula:

Xipr = Xi = h [ X + 5F {3(Xin + Xi) — gh(Xi, — X))} +5X]] =0,

where the system of ODEs is written &5 = F(x) € IR". An explicit, 4-step, third-order,
extrapolation formula is used, both as a predictor, and to provide a local errcatodi@ his has
the correct asymptotic behaviour, both for small and for large step sizes.

For differential-algebraic equations (DAESs) of the foR(x’, x,¢) = 0 € IR", the Lobatto IIIA

formulae must be solved simultaneously for the derivatM‘%‘%, Xi,1- The Newton iteration

matrix is then non-singular for an index-one system. Predictors are also needeel derivatives,
and at the off-step points.

The ODE integrator (SYMIRK) has been adapted in this way, for the solution oxiode DAEs,
and the resulting integrator (SYMDAE) has been inserted into the multietsg code (MSH-
DAE) developed by R. Lamour for differential-algebraic BVPs. Tests owatdf boundary-value
problems have shown that, at least in some cases where the standard Bjp&tante@ MSHDAE
fails to integrate across the interval of interest, the dichotomicadlylstintegrator SYMDAE en-
counters no difficulty. What is more, the modified version of MSHDAE produces enrae
solution in such cases, and within limits imposed by computer word length, fibeee€y of the
solution process improves with increasing stiffness. For some non-stiffggnshlthe solution is
also entirely satisfactory.

A Two-level Finite Element Method for the streamfunction form of the Navier-Stokes Equa-
tions

Faisal A. Fairag

(King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia)

to be submitted

Sharpening the stability bound in the maximum-norm of the Crank-Nicolson scheme for
one-dimensional heat equation

Istvan Faragd & C. Palencia

(Edtvos Lorand University, Budapest, Hungary)

The maximum norm stability constaat, of the numerical solution of the one-dimensional heat
equation, via the Crank-Nicolson method, is considered. It is known that the metlordriaative,

i.e. thatC, = 1, only for 1 € (0, 1.5], whereu = ;7. Moreover, itis also known that, < 23 for

any value ofu > 0. In this talk, using the Laurent expansion and the theory of sectorial operators,
we sharpen the existing estimatesta C, < 5, for u > 1.5.

New methods for oscillatory problems based on classical codes
Amelia Garcia & Pablo Martin
(University of Valladolid, Spain)

The numerical integration of differential equations with oscillatory solutisres very common
problem in many fields of the Applied Sciences. Some methods have been specatdevihis
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kind of problems, such as those of Bettis [1], Gautschi [2], Gonzatled. [3], Martmn et al [4],
van der Houwen and Sommeijer [5] ... In most of them the calculation of the ceetScheeds
more computational effort than the classical codes because the mentionedardsftiepend on
the frequency of the problem in a not simple manner. On the contrary, in this workesermew
algorithms specially designed for oscillatory problems whose coefficientsshsineple frequency
dependence. The methods obtained are competitive when comparing with classicgecial
codes.
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Acquiring a solution of the time-dependent Schodinger equation using CP methods
Andy Georges& Marnix Van Daele
(University of Ghent, Belgium)

The time-dependent Schrodinger equation (TDSE) can be solved as a partrandiffieequation

of the parabolic type, e.g. by using a Cranck-Nicholson scheme. Another approach can be as
follows. We take constant approximations to the potential in the time dimensioen dne can

use the Separation of Variables method in eacht time interval in orderve 8w TDSE. The
solution¥ in each such interval can be written as a linear combination of the solutidhe time-
independent Schrodinger equatian; multiplied with an appropriate exponential factor. These

1 can be efficiently calculated using CP methods. In the movement througwewwan calculate

the coefficients to the solutions; of the next time interval by imposing a matching condition at

the meshpoints in time.
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Operator Splitting and Approximate Factorization for Taxis-Diffusion-Re action Models
Alf Gerisch & Jan G. Verwer
(Martin-Luther-Universiat Halle-Wittenberg, Germany)

We consider the numerical solution of 2D systems of certain types of taxis-diffusaction equa-
tions from mathematical biology. By spatial discretization these PDEeRystare approximated
by huge systems of positive, nonlinear ODEs (Method of Lines). We are espenctaligsted in

the numerical integration of these large ODE systems for low to moderatesagdoy means of
splitting techniques. An important consideration is maintenance of positivigyapply operator
splitting and approximate matrix factorization using low order explicit Rukg#a methods and
linearly implicit Runge-Kutta-Rosenbrock methods. As a reference method tiegaygurpose
solver VODPK is applied.

Exponential Integrators for Classical Molecular Dynamics
Volker Grimm
(Heinrich-Heine-Univers#t Dusseldorf, Germany)

A problem in integrating molecular dynamic systems is the presence of high-freqascitg-
tions, which restricts the integration step-size. In many cases aitiesglparation of the forces
into fast forces and slow forces is available in such a way that thédiasts are nearly linear and
contain all of the high-frequency part of the solution. Exponential integrators are cratsudeich
overcome the step-size barrier.

Two-sided enclosures for [IVPs by means of bounding operators I: Constretion of bounding
operators and convergence properties

Christian Grossmann & Zoltan Horvath

(TU Dresden, Germany)

Monotonicity properties of the originally given initial value problem are applederive dis-
cretization methods which generate guaranteed upper and lower bounds for the unknaan.solut
The main idea of our discretizations is to replace the right hand side of the problappbyand
lower bounds respectively using the concept of bounding operators similar to a techmigiyueigr
proposed for 2-point boundary value problems. The solution of the modified initial value problem
constitute upper and lower solutions respectively in case when the original prabfaonotone.
Further, monotonicity assumptions may be relaxed by means of monotone splitting.

Finally a rather general class of bounding operators is introduced and two basiplpsrof con-
struction of bounding operators are studied . The first one is based on interpolationrighthe
hand side while the second one rests on numerical methods of dense and smooth output, which
are considered as solution methods for the original initial value problem. The boundiragasper
technique can be viewed as a correction process of this underlying method.

38



On numerical contractivity for DAESs
Inmaculada Higueras
(Universidad Publica de Navarra, Spain)

In the theory of ODEs, different models have been introduced in order to study theicaime
stability of the methods. One of these models are the contractive problems amdettesting
methods in this context are the algebraically stable methods.

Given a DAE, similar questions can be made. In this talk we discuss aboutalve¢ mean by
contractivity in the context of DAEs and its numerical counterpart.

On the Monotonicity Conservation of the Numerical Solution of the One-Dmensional Heat
Equation

Robert Horvath

(University of West Hungary, Institute of Mathematics, Hungary)

It is very important to choose such numerical methods in the applications wiggtoaonly con-
vergent, but they conserve some characteristic properties of the descriloedsrSome of these
properties are the nonnegativity conservation, concavity conservation, sigrtgtaiul others in

the case of the heat conduction.

In this lecture we introduce the notions of the totally monotone and monotonicity conserving one
step vector iterations. We analyse their conditions. The results are apptfezlqualitative inves-
tigation of numerical solutions of the one-dimensional heat equation. We give the argcasd
sufficient conditions of the monotonicity conservation.

Two-sided enclosures for IVPs by means of bounding operators II: Apptation to PDEs
Zoltan Horvath & Christian Grossmann
(S£chenyi Istén College Gigr, Hungary)

Here the basic principle of bounding operator discretizations discussed in thdipgeiaak (Gross-
mann, Horvath: Two-sided enclosures for IVPs by means of bounding operators |: Cboastruc
of bounding operators and convergence properties) will be studied more in detaibfepaaific
classes of problems. These problems arise in semidiscretization akimatindary value problems
for partial differential equations of parabolic type and of first order hyperbolic tygspectively.
First, we investigate the relevant characteristics of the obtain#tbhue for these problem sets and
discuss numerical results. Further, for selected applications of the method<ansdieleration we
derive guaranteed a posteriori error estimates in case of underlying continu@usdabiers.

Five-pointed difference schemes for the equations of parabolic type
Hrant Hovhannissian
(The Engineering State University of Armenia, Armenia)

The fourth-power parabolic type of equation, given in the orginal and the boundary conditions is
observed in the research.For the mentioned problem is studied the second and thpdoert
accuracy indeterminate, five-pointed difference schemes, which fotagah(beginning from the
second) are linear algebraic system of equations with five-diagonal matrix.
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The obtained linear algebraic system of equations with five-diagonal matsx&svied by the
Thomas'’s algorithm, right, left and according to the methods of opposing displaceroeit/e-
pointed difference schemes are proved:

e maximum of source
e theorem of comparison
e theorem of existence and uniqueness

e mMajorants.

Block Boundary Value Methods used as General Linear Methods
Felice lavernaro & Francesca Mazzia
(Dipartimento di Matematica, Universitdi Bari, Italy)

The numerical solution of the initial value problem
{ y'(t) = flty),  te€ltoto+T],
y(to) = Yo,

by means of a block-Boundary Value Method (block-BVM), generates, atstéthe integration
procedure, the following nonlinear system of equations:

( k
Za i =nY B0, i=1. k=1, initial methods,
7=0
k: k:l
¢ > Qmy = h Z 5]+k1 o n=v,...,.N—k+uv, main method,
Jj=—k1 Jj=—k1
k ) k )
> o)y = hZﬂ,ﬁzljf]@j, i=N-—k+k +1,...,N, final methods,
L j=0 -

wherek; < k is the number of initial methods aridis the stepsize of integration. The integér
defines the dimension of the discrete problem as well as the time intervalvbiar the approxi-
mation is computed, name[% ,ty ], with t (") + Nh. In detaiIS,yZ” ,1=0,...,N,are
approximations to the true solutlon at the tnt:f.u’@ while 7 = @™, 4™y, The initial and final

methods are necessary to approximate the boundary conditions needed by the main niethods, t
is
y(()n)a"' ’yl(c?)—la y](\rfl)fk+k1+1"" 73/](\7;)'

An alternative approach is to neglect the initial methods and use informaonthe previous
computed solution to approximate the left boundary condition. This reduces the dimengien of t
system taV — k;, and change the stability and convergence properties of the overall block-BVM.
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On the contractivity of implicit-explicit linear multistep method s
Karel in 't Hout
(Leiden University, Mathematical Institute, The Netherlands)

This talk is concerned with the class of implicit-explicit (IMEX) limeaultistep methods for the
numerical solution of initial value problems for systems of ordinary differéetiaations. These
numerical methods have been considered by various authors in the literaturg@algspe the
recent years. In this talk, we are interested in the stability progeofieMEX linear multistep
methods. We will analyze their stability by considering certain linear autonsnsystems of
ordinary differential equations. First we present a theorem on contracwhtgh can be regarded
as a matrix-valued version of a theorem of von Neumann for several varididat, we determine
the so-called contractivity regions of some popular IMEX linear multisteghods. Finally, we
give a result based on the stability regions of IMEX linear multistep methgidkjing strong
stability.

Modular Implementation of Navier-Stokes Equation Solver on Arbitrary/Hyb rid Unstruc-
tured Meshes

Makky Jaya & Claus-Dieter Munz

(Institute for Aerodynamics and Gasdynamics, University of Stuttgart, Germany)

We describe the modular implementation of Navier-Stokes equation code usingitiee\elume
discretization scheme in Fortran 90. By the current implementation, objectted models of
mesh, primitive and conservative variables and related objects comgeyniRiemann problem
and higher order computation are modularly contsructed and employed. Due to the hightftexi
and independency of each module (object), the end solver of Navier-Stokes equatibreiseed
by unifying all modules in the main driver code. By this way, the overall stinecbf the new
implementation may be implicitly viewed as a kind of black-box. Despite of belhg ta design
a black-box solver for Navier-Stokes equation, the achieved code embodies rgtbepaf dy-
namic modular libraries which can be used in any part of the main driver caetail&l analysis of
the performance and strategy of the current modular implementation, and theofesutherical
tests from simple to highly complex geometries are presented.
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A second-order differential-finite-differences model
Alex Kolpakov
(Siberean State Universiti T&I, Russia)

The paper is devoted to numerical analysis of a differential-finite-diffes model describing, in
particular, a filamentary composite [1]. The numerical analysis is basegholafental solutions
of the system.

The model under consideration has the form

whereD, f; = fiv1fi, D_f; = fi_1f; are the operators of finite differences.

dw;/dt(t;) = 0 if the i-th fiber in broken at the poir,.

Gi(t) = 0,t € [t1,t,] if the matrix between the (i+1)-th and the i-th filaments is broken at the
interval(t,, t5].

Combining the broken fibers and matrix layers, we can obtain a hole.

The fundamental solutions

The problem above has two types of the fundamental solutions:

- corresponding to an expansion center (or broken fiber);

- corresponding to a pair of forces applied to adjacent fibers.

The first solution was obtained in [2]. The second solution is found by the author. Both the
solutions can be written in explicit forms (as series).

Transformation of the initial problem Using the fundamental solutions we can transform the
initial problem to a system of integral-algebraic equations, which involvest pdiere the fibers
or/and the matrix are broken. This system is less in dimension then thépndidem.

Numerical analysis

The integral-algebraic system was solved numerically. Some interégimghe mechanics point

of view models were analyzed. There were among them the problems about concentration of
stresses near a broken matrix and near a hole.
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Ondelay dependent error estimates for waveform relaxation methods for dferential-functional
equations

Marian Kwapisz

(Institute of Mathematics, The Pedagogical University of Bydgoszcz, Poland)

In the paper we deal with the iterative processes

Ty (t) = F(t,op1(t), zi(t), zx()), k=0,1,..., teJ=10,T],
$k+1(t) = g(t), te Jy= [—h, 0], h > 0, xo- given,
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for solving the initial value problems

() = f(tx(),z(), teJ
z(t) = g(t), te .y,

whereg € C(Jy, R"), f € C(J x R* x Cy(Jp, R"), R"), Jr = [—h,T], andC,(Jr, R™) denotes
the space of continuous functions defined/grand being equal tg on J;.

For the splitting functionF’, f(t,z,y(-)) = F(t,z,z,y(-)), we assume the one-sided Lipschitz
condition

(F(ta Ty Y, Z) o F(tafa Y, Z),l‘ - ‘f) < m(t)||x o fHQ
and the Lipschitz conditions with respect to the last two arguments
|1F(tz,y,2) = F(t, 2,9, 2)|| < K@)|ly = gll + L(O)12 — 2l

Itis assumed that is continuous, nondecreasing, and satigfies3(t) < ¢t and||y|| = max_j<s<; ||y(s)]]
fort € J. Letu,(t) = maxo<s< ||24(s) — 2k (s)||, wherex, is the exact solution of the initial value
problem under consideration. Under suitable conditions on the given funetiphs L, ug, we

will present delay dependent estimates for the enig(s).

The Computation of Consistent Initial Values for Nonlinear Index-2 Differential-Algebraic
Equations

René Lamour & Diana Estevez Schwarz

(Humboldt-University of Berlin, Germany)

The computation of consistent initial values for differential-algebraic egps(DAES) is essential
for starting a numerical integration. Based on the tractability index corecepthod is proposed
to filter those equations of a system of index—2 DAEs, whose differentiation leaas index
reduction. The considered equation class covers Hessenberg-systems and tibasqtiaing
from the simulation of electrical networks by means of Modified Nodal AnalysislAM The
index reduction provides a method for the computation of the consistent initial vdlnesealized
algorithm is described and illustrated by examples.

A variable-stepsize variable-order multistep method for the integation of perturbed linear
problems

David J. Lopez & Pablo Martin & Amelia Garcia

(University of Valladolid, Spain)

In 1971 Scheifele [3] wrote the solution of a second order equation as an expansiamsrofe

the G-functions. This set of functions extend the classical monomials in the Tayless#rthe
solution, and it show interesting properties when integrating perturbed proldReosntly, Martin

and Ferrandiz [2] constructed the SMF code, based on the Sché#tlactions for oscillatory
problems, which was generalized by Lopez and Martin [1] to the linear stetiLM method.
However, the remarked codes are constant steplength methods, and effi@grators must be

able to change the steplength. In our work we extend the ideas of Krogh for the Adams methods
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to the LM algorithm, removing thé&'-functions, with a special attention in the computacional cost
of the coefficients of the method. We show the advantages of the new code in perturbethpyoble
and its interesting behavior in mod&~C'.

[1] D.J. Loépez, P. Martin, A numerical method for the integration of perturbezht problems,
Appl. Math. Comput96 (1998) 65—73.

[2] P. Martin, J.M. Ferrandiz, Multistep numerical methods based on theiféte G-functions
with application to satellite dynamics, SIAM J. Numer. Arizd.(1997) 359-375.

[3] G. Scheifele, On numerical integration of perturbed linear oscillaysgems, ZAMR2(1971)
186-210.

Postprocessing the linear finite element method
Julia Novo & Javier de Frutos
(University of Valladolid, Spain)

In [1] a postprocessing technique, developed earlier for spectral methods ¢Reisded to the
finite-element methods for dissipative partial differential equationshdngaper the authors claim
that the postprocessing technique does not improve the order of convergence of théciinéete
method when using piecewise-linear polynomials. Obviously, this a drawbadkntitatseriously
the range of applicability of the method. However, the new method has been provewdo
a superior rate of convergence than the standard finite-element method whethathénear
elements are used (say, quadratic, cubic ... )

In this talk we present a modification of the analysis technique that allowspreve an optimal
rate of convergence, in thE' norm, of postprocessed linear finite element methods. A superior
rate of convergence over standard methods is then obtained also in the ¢asardfilite element
methods.

[1] B. Garcia-Archilla & E. Titi, Postprocessing the Galerkin method: The Finite Element Case
SIAM J. Numer. Anal.37, 2, 470-499.

[2] J. de Frutos & J. NovoA spectral element method for the Navier-Stokes equations with im-
proved accuracySIAM J. Numer. Anal., to appear.

Quantum motion numerical calculation for axial channeling
Sergey Nurmagambetov
(Karaganda State University, Kazakhstan)

Wave function that describe the quatum motion of channeling particles in soliddyuareade-
termined by numerical methods applying in solid state physics like APW, OPWaioa. But
because of two-dimensional case it can be used more direct solving numeribaldsreBased
on one-dimensional numerical analysis of plane channeling that is used the synforetriof

linearly independed solutions we are applied this method for two-dimensionalfestievarious
linearly independed solution of given symmetry are determined at edges ofrdéegneell. Then
using random walking Monte-Carlo calculations the wave function is determoradrfer space
of elementary cell. In paper we discuss various types of wave functions and endfage for
diamond like structure crystals.
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Stability of W-methods with applications to operator splitting
Alexander Ostermann
(Universi€ de Gebve, Switzerland)

We analyze the stability properties of linearly implicit Runge-Kutta diszagions of the parabolic
initial value problemu’ + Au = Bu. We work in an abstract Banach space setting, assuming that
A is the generator of an analytic semigroup and tBas relatively bounded with respect té.

The numerical method treats implicitly, whereas the right-hand side involvirig)is discretized

in an explicit way. Therefore the method can be seen as a splitting methodn Application

of our stability results, the convergence of such splitting methods is shown.oMarehe layout

of a geometric theory for discretizations of semilinear parabolic probkéms Au = f(u) by
W-methods is presented.

Coupled High Order Boundaries in Numerical Solution of Hyperbolic Equations
Manouchehr Parsaei
(Tehran University, Iran)

When approximating hyperbolic conservation laws numerically any groups of S-equaé&suk-

ing from the difference equations ) can be assumed to define a coupling between Sidahtpe
waves. This coupling determines the inter-relationship between the amgittiiesolution waves

at S consecutive nodes. This relationship is presented in the form of S eigsropaira way S
component waves each having a distinct phase and group velocity. At the out flow bouttdaries
boundary conditions participate in defining these inter-relationships and new ségeiefpairs

are produced. When the first group of solution waves approaches the boundaries each afethe abo
wave components is decomposed in to the second set of waves (e-vectors) andndeperide

sign of the group velocity of those waves parts of them move on and pass through the bound-
aries and the other parts are reflected back in to the system. The |ates w@ now converted
back to the first form, this results in a deformation in the shape of the medlecaves together

with a change in their speeds. In this talk we present this coupled method of iagabgzindary
conditions and compare it with the time Fourier transformation method in whltder of the
difference equations are used to determine the behavior of the discretizatiom ladundaries.
Some numerical results are presented to support the points made.

Numerical modeling forest fire spread initiation
Valeri A. Perminov
(Belovo Branch of Kemerovo State University, Russia)

In this paper the theoretical investigation of the problem of forest fire spreathdy was car-
ried out. The research was made by means of the mathematical modeling metipiysio&l
processes. It was based on numerical solution of two dimensional Reynolds equatithresde-
scription of turbulent flow taking into account for diffusion equations chemical compsraand
equations of energy conservation for gaseous and condensed phases. In this context; a study
mathematical modeling - of the conditions of forest fire spreading that would rmakessible to
obtain a detailed picture of the change in the velocity, temperature and componeahtration
fields with time. The paper suggested in the context of the general mathenmatidel of for-
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est fires gives a new mathematical setting and method of numerical soluteoprablem of a
radioactive spread above the forest region.

Let us examine a plane problem of radiation-convection heat and mass exchangetdidses
in all forest strata with gaseous combustion products and radiation. Theestifasource is
modeled as a plane layer of burning forest fuels with known temperature as @fuattime
and turned off after the forest fire initiation. It is assumed that the fateshg a forest fire
can be modeled as a two-temperature multiphase non-deformable porous readive mieet
there be a so-called "ventilated” forest massif, in which the volume adtions of condensed
forest fuel phases, consisting of dry organic matter, water in liquid staliél, pyrolysis products,
and ash, can be neglected compared to the volume fraction of gas phase (componertsdf a
gaseous pyrolysis products). To describe the transfer of energy by radiation welifisesian
approximation, while to describe convective transfer controlled by the windjeandty, we use
Reynolds equations.

Because of the horizontal sizes of forest massif more than height of forest témsykequations
of general mathematical model of forest fire was integrated between tite fimm height of
the roughness level - 0 to h. The three dimensional problem formulated above isdadure
solution of the two dimensional system of equations. The thermodynamic, thermophyslical a
structural characteristics correspond to the forest fuels in the canopyiié dorest. The solution
of the system of equations with initial and boundary conditions may result in definingettde fi
of velocity, temperature, component concentrations and radiation density.o3e ttle system,
the components of the tensor of turbulent stresses, and the turbulent heat and nessarfux
determined using the local-equilibrium model of turbulence.

The boundary-value problem was solved numerically using the method of splittinglagr oo
physical processes. In the first stage, the hydrodynamic pattern of flow andwdistribf scalar
functions was calculated. The system of ordinary differential equations of cakekmetics ob-
tained as a result of splitting was then integrated. A discrete analog ftansyd equations was
obtained by means of the control volume method using the SIMPLE algorithm.

The accuracy of the program was checked by the method of inserted analyticalrsoldinalyti-
cal expressions for the unknown functions were substituted in system of difféeitions and
the closure of the equations were calculated. This was then treated as theeis@ach equation.
Next, with the aid of the algorithm described above, the values of the functiodsugse inferred
with an accuracy of not less than 1dimensions of the control volumes on the solutictuasas]

by diminishing them. The time interval was selected automatically.

Fields of temperature, velocity, component mass fractions, volume fraaigpisases and con-
centration components were obtained numerically. It allows to investijatamics of forest fire
spread under influence of various external conditions: a) meteorology conditions (parégure,
wind velocity etc.), b) type (various kinds of forest combustible materiaid) their state(load,
moisture etc.). A great deal of final and intermediate gaseous and dispersaastiomproducts
of forest fuels is known to be exhausted into the atmosphere during forest firesnaaonoxide,
carbon dioxide, nitrogen oxide, water, soot, smoke, methane, other hydrocarbons antestc. T
knowledge of these kinds of ejection enables a full estimate of the damage fromfi@®so be
made. The results obtained agree with the laws of physics and experimental data.

The research has been carried out due to the financial support of RFBR (Proje@8:0de
03013).

46



Approximations of coupled differential and difference equations by ordnary differential
equations

Larisa Piddubna & Igor Cherevko

(The State University of Chernivtsy, Ukraine)

There has been a great development of the theory of functional-differential equ#tioBs due
to the increasing number of applications of FDE in various fields of science amdaiegy. Of
special interest are the coupled differential and difference equations pphexamation algorithm
of FDE by a sequence of ordinary differential equations (ODE) has been conside3goh[the
researches of control and stability problems in systems with delay. Thefdime present talk is
to obtain approximation results for new classes of time lag systems and uséothemodeling in
electrodynamic. As straightforward application of the above result we ahradider the particular
circuit described in [4] by means of system partial differential equatiohes@& equations are re-
duced to a difference-differential equation of neutral type that may be wiitterm the coupled
differential and difference equations.
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A method of characteristics for solving multirate partial differential equations in radio fre-
guency application

Roland Pulch

(Universitat Karlsruhe (TH), Germany )

A multirate behaviour with widely separated time scales arises afteimduit simulation. This is
especially given in radio frequency circuits, which are used in commtiorcalectronics. Their
behaviour in time makes the analysis of such circuits more difficult. By meamseiv approach,
which bases on a PDE model, these problems can be avoided.

In the talk, we introduce this model and discuss the arising system of PDEs. rruotiee a
new numerical method to solve the system with periodic boundary conditions is paesé&hie
technique differs from other approaches by using the special structure of the undeiygng P

Numerical Solution of a Nonlinear Model of Urea Hydrolysis Reactor
Mohammad R. Rahimpour & A. Azrapour
(Shiraz University, School of Engineering, Iran)

Numerical Solution of a Nonlinear Model of Urea Hydrolysis Reactor

Abstract

In this paper a mathematical model used for simulation of an urea hydrolysisneBais model is
able to obtain the temperature and concentration profiles along the reactorelenNRaphson
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method used to solve the nonlinear algebraic equations to calculate the equildrdimon-
equilibrium concentration amounts. Also the half-method used to satisfy tivéyacoefficients
of the reaction components. In this reactor a plug-flow model is considered and tiad gi&r
ferential equations of the model was solved by the explicit numerical method. Tihemeatical
model results compared with the data of an industrial-scale plant. The nairesalts were in a
good agreement with the data of the industrial-scale plant.
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On Implicit Euler for High-Order High-Index DAEs
Jirgen Sand
(Dept. of Computer Science, Univ. of Copenhagen, Denmark)

The Implicit Euler method is seldom used for solving differential-algebraiagons (DAES) of
differential indexr > 3, since the method in general fails to converge in the first2 steps after

a change of stepsize and after the initial point.

However, if the differential equation is of ordér= r — 1 > 1, an alternative variable-step version
of the Euler method can be shown uniformly convergent. This variable-stdpmohiest equivalent

to the Implicit Euler except for the first— 2 steps after a change of stepsize and after the initial
point.

Generalization to DAEs with differential equations of ordes » — 1 > 1, and to variable-order
Backward Differentiation Formulas is discussed.

Strategies for the Numerical Solution of the Navier-Stokes Equations
Joerg Sautter
(University of Dusseldorf, Germany)

Expensive or dangerous experiments are being more and more frequently replaced bgatumer
simulations. In addition, a simulation produces the possibility to analyze pescedsch can not
be tested in an experiment. Weather forecasts, for example, depend strorgficiemt numer-
ical simulations in fluid dynamics. | will show some general ideas for timegration and their
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limitations, capabilities and advantages. Then | will present a numeaoaparison of some time
stepping schemes and different approaches for the discretization and soluheriNafvier-Stokes
equations for incompressible homogeneous fluids.

Implicit Taylor series methods and stiff semi-linear initial value problems
Hans-Eberhard Scholz
(Martin-Luther-Universiat Halle-Wittenberg, Germany)

In this talk we discuss results concerning the solvability of the algebraidiegsastability, and
convergence properties of the implicit Taylor series method applied to &#ses$ of stiff semi-
linear systems of differential equations. All these results are independem stitfness of the
systems.

Qualitative Properties of Discretizations for Index 2 DAE’s
Johannes Schropp
(Universitat Konstanz, Germany)

We analyze numerical discretizations applied to indeX¥AE’s and compare the asymptotic and
geometric features of the numerical and the exact solution. For a class otelischemes satis-
fying the first order constraint exactly it is shown that the geometric and asyimptoperties of
the DAE are reproduced correctly. The proof combines reduction techniques of idesgiatiex

2 DAE's to ODE’s with some invariant manifold results of Nipp and Stoffer

Numerical Approximation of Nonlinear BVPs by means of BVMs
Ivonne Sgura& Francesca Mazzia
(Department of Mathematics E. De Giorgi - University of Lecce, Italy)

Let us consider the following nonlinear Boundary Value Problem (BVP)

Yy = f(ty), to <t <T,
g(y(te),y(T)) = n

wheref, g : [to, T] x R™ — R™, y,n € R™, f andg are differentiable functions.

The numerical solution of the nonlinear BVPs can be found using two different approddies
basic one is to use a numerical method to form a discrete algebraic systemaahide solved
with a Newton iteration to obtain a discrete solution. The other approach toimsapplying the
Newton method to the nonlinear differential equation. Each iteration reqtniessolution of a
linear BVP. In practice the solutions of the continuous linear subproblems can onlydretelis
approximations. Therefore the theory of inexact Newton method must be used toidetbow
accurately we must solve these subproblems to ensure the convergence to the ebtahe con-
tinuous non linear problem. The two approaches are equivalent if the grid is not changeg duri
the iterative process.

In this paper we apply the quasi-linearization technique together with an ienmevt of the mesh
selection strategy presented in [1] and we use Boundary Value Methods tdidéstite continuous
linear BVPs. Stopping criteria on the residual of each linear BVPs and appt®ximate solution
are given to guarantee the local convergence to the nonlinear solution. Numegpeaiments on
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stiff problems show the behavior of this technique, giving rather satisfactariise®mpared with
well known solvers for BVPs.
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Adaptive Collocation and Least-Squares Method for Navier-Stokes Equatios
Vasily P. Shapeew& Leonid G. Semin
(Institute of Theoretical and Applied Mechanics SB RAS, Russia)

In the present study the method of collocation together with least-square9 (@LSolving
boundary-value problems for stationary Navier-Stokes equations in two dimensjomgpased.

The approximate solution is found as piecewise polynomial funcf(oﬁ: > = Z ajmp;, Where
J
¢; are the basic functions, m is cell number. The velocity components are thought as setend

polynomials, pressure - as linear function. Moreover, basic functions areitakech manner that

the approximate solution satisfies continuity equation. Coefficiepswill be determined from
collocation equations and matching or boundary conditions. Number of these equationseis great
than number of unknown coefficients,,. Solution of this system of equations is thought in terms
of least-squares method [L.G. Semin, V.P. Shapeev. Computational Technologies\Vadlo®3,

No. 3, p. 72-84]. The order of convergence not worse than second was observed in humerical
experiments in problems with smooth solutions at moderate Reynolds numbers. Algairighich
adaptation to solution singularities is implemented. Grid is adapted on teeobasposteriory er-

ror estimation. As numerical experiments have shown, grid refines firstiofthlbse subdomains
where solution of initial differential problem has large gradients. This studypeaformed under
financial support of RFBR, grants 99-01-00515 and 00-01-00370.

Multistage algorithms for numerical solution of ODEs
Yauheni Sonets& V. V. Bobkov
(Belarusian State University, Belarus)

For numerical solution of initial value problems for a system of nonlinear ordinafgreiftial
equations (ODES) in the form

u'(t) = f(t,u(t))
one-step multistage algorithms of variable order are proposed. These algonthbasad on ap-
proximation of the original problem by initial value problems for systems of lineaE©®©Rith
constant coefficients. In the general case for arbitrary fungtione does not have enough infor-
mation on structure of the exact solution. In the case of a system of linear QRE&$ormation
is available and can be used for construction of more efficient specialietdtbds.
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Multistage linearization of the original problem is performed on the basis bhtque of succes-
sive corrections. The essence of this technique is successive improveraanhitial approxima-

tion to the exact solution of the system of nonlinear ODEs within the integraim Stalculation

of the improved approximation is based on information on defect of the preceding bus, the

proposed algorithms have a feedback with the systems they are applied to. elthiadk affects
their structure and choice of their parameters.

Different variants of the algorithms and results of numerical experimeatdiscussed.

Are the Stability Estimates, in the Kreiss Matrix Theorem, Sharp ?
Marc Spijker
(Leiden University, The Netherlands)

In the stability analysis of numerical processes for solving initial value prob] one is often faced

with the task of estimating the spectral norm of théh power of given matrices. Stable processes

are distinguished by the property that moderate upper bounds for these norms exist.

The Kreiss matrix theorem gives conditions under which such moderate bounds dreQaé

of the conditions in the theorem involves the resolvent of the matrices under cetsiderThis
so-called resolvent condition is known to imply upper bounds which grow linearty tivé order

of the matrices as well as with the exponent

It is a long standing problem whether these upper bounds can be sharpened to bounds which grow
much slower than linearly with the order or with The solution to this problem will be given in

this talk. The underlying research was carried out jointly with S. Tracogn®dndWelfert.

Path Following-Collocation Method for Solving Burger’s Equation
Muhammed I. Syam
(United Arab Emirates University, UAE)

Anew numerical technique is presented for solving the Burger’s equation. It is pagkd theory
of the Collocation and path following methods. Theoretical and numerical semalfpresented.

The dynamical behaviour of Runge-Kutta time discretizations for nonlirear parabolic prob-
lems near an equilibrium point

Mechthild M. F. Thalhammer & C. Gonzalez & A. Ostermann & C. Palencia

(University of Innsbruck, Austria)

Runge-Kutta time discretizations of nonlinear evolution equations are studie@dbs&ract Banach
space setting of analytic semigroups that includes fully nonlinear parabolid-lmatisdary value
problems.

We give smooth and nonsmooth-data error estimates for the backward Euler mettzocaner-
gence result for stronglyl(6)-stable Runge-Kutta methods. We further show that the geometric
properties near a hyperbolic equilibrium are well captured by the discretization.

Numerical examples illustrating the theoretical results are presented.
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DAE Structure and Index in Dependence on MOSFET Modelling in Circuit Simulation
Caren Tischendorf
(Humboldt-University of Berlin, Germany)

The simulation of MOS integrated circuits requires the inclusion of spe@dkets describing the
voltage-current or charge-current characteristics of the MOS elemehéseTmodels arise from
the solution of the Poisson equation describing the statical behaviour coupled watmtireiation
equations describing the charge carrier transport in the semiconductor.

Different levels of the models may change the qualitative solution behaviour céshéing DAE
equations. Beside conventional explicit models we analyze new semi-impl@8RET models
used in circuit simulation. We show the influence on the structure and the index @fsihiéng
DAEs.

Solving Partial Differential Equations with Using Power Polynomials
Zdzislaw W. Trzaska
(Warsaw University of Technology, Poland)

The paper presents new approach to explicit solutions for two linear simulatanebakdther-
ential equations with damping terms

Uy = Ri+ Liy, 1, = Gu+ Cuy (4)

wherez € (0,1) andt € (0,00), with v = u(z,t) andi = i(z,t) denoting the transversal
variables (e.g. voltage in an electrical transmission line or presausehiydraulic system) and
longitudinal variable (e.g. current or flow), respectively. The subscripysfetaderivatives with
respect to independent variableandt. Longitudinal and transversal parameters per unit length of
the system are denoted By L andG, C, respectively. Corresponding initia(x, 0) andi(x, 0) as
well as boundary:(/, t) andu(0, t) = Aqi(0,?) conditions are specified. Itis shown that solutions
for (1) can be based on particular forms of power polynomials

n m—1

Pn(y) = Z an,kyka Tm(y) = bm,ryr (5)

k=0 r=0

in indeterminate; = y(s) depending on the equations coefficients and the complex frequency
Some basic properties of the power polynomials (2) are investigated and linksdretihem are
established. In result the solution for (1) are given by

Un(y) = Pu(y)Uo(s) + bTn(y) 1o (s),
In(y) = aT,,(y)Uo(s) + Pn—1(y)1o(s)

Problems involving equalities and limits are also solved. For oo we can write
Uy _ Uy
Inia |N—00 In |N—00

Substituting (2) into (3) and solving (4) faoy . yields

yE+ VY + 4y ()
2a

(6)

= Qo (7)

Qoo:
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which remains valid if the conditio®@y.; = Qn for N — oo is replaced by, (y) = Qo(s) for
n=12,..,N < oo.

A new method to solve first order Systems of nonlinear two-point boundary &lue problems
Marnix Van Daele & J.R. Cash
(Universiteit Gent, Belgium)

Deferred correction, which looks like,

¢(m) = 0 (9)
o(m) = v(»n) (10)

is a widely used technique for the solution of first order systems of nonlinear two-point bgunda
value problems

= = f(z,y), a<x<b g(y(a),y(b) = 0. (11)

In an influential paper, Skeel has proven the following result. Consider thexapyate numerical
solutionof (11)onamesh:a =z, < x9 < ... < zx.1 = b. Denote byAy the restriction of the
continuous solutiony(x) to the finite gridr. Let ¢ be a stable numerical method and assume that
the following conditions hold for the deferred correction scheme (9), (10)|n® Ay|| = O(h?),

(i) [|©(Ay) — ¢(Ay)|| = O(h™*?) and (iii) (Aw) = O(h") for arbitrary functionsw having at
leastr continuous derivatives. (7)) = ¢ (n) then||7 — Ay|| = O(h"*P).

In the context of two-point BVPs) can be chosen to be a Runge-Kutta methods of grahrile

Y = ¢ — ¢* where¢* is a Runge-Kutta method of ordgr+ r. For most of the schemes derived
so farr = 2. Recently however, we have established the conditions to obtain higher values of
and in this talk we will consider a particular scheme based on Lobatto methodsrefl order8

for whichp = 4 andr = 4. Special attention will be paid to construction of interpolants and the
problem of error estimation.

Accuracy improvement with RKN methods
Tanja Van Hecke & Marnix Van Daele
(Universiteit Gent, Belgium)

Deferred correction is one of the acceleration techniques to improvedhesay of a basic, simple
method to solve ODEs with boundary conditions. We applied this technique on second order
boundary value problems of the typé = f(x,y) and found a way to increase the order of the
basic numerical method by using a suited error estimator. The basic methal @s whe error
estimator are based on mono-implicit Runge-Kutta-Nystrom methods which henadvantage

that the dimension of the system to be solved when applying the numerical method dh @BV

be strongly reduced. A maximization of the increase of order of accuracy will bessied as well

as the stability of the scheme. Within this deferred correction scheme myiiwit methods will

be compared with Lobatto IlIIA methods especially in case of stiff problems.
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Exponentially-fitted Runge-Kutta methods: construction and implementation
Guido Vanden Berghe& L. Ixaru & H. De Meyer
(Universiteit Gent, Belgium)

Exponentially-fitted Runge-Kutta (EFRK) methods witlstages are constructed, which exactly
integrate differential initial-value problems whose solutions are lineatbauations of functions

of the form{z’ exp(wz), 27 exp(—wz)}, (w € RoOriR,j = 0,1,..., jmaz), where0 < jmaz <
|s/2 — 1], the lower bound being related to explicit methods, the upper bound applicable for col-
location methods. Explicit methods withe {2, 3,4} belonging to that class are constructed.
For these methods a study of the local truncation error is made, out of which follewmspe
heuristic to estimate the-value. By combining a fourth-order explicit EFRK method with an
equivalent classical embedded (4,5) Runge-Kutta method a more sophistacteduedsigievel-
oped for the estimation of the occurringvalues. Error and step-length control is carried out by
using the Richardson extrapolation procedure. Some numerical experiments shtiwitdreg of

the introduced methods. Some preliminary results for implicit EFRK methodlbevpresented.

Extrapolation methods in Lie groups
Jorg Wensch
(MLU Halle, Germany)

Considered are differential equations on Lie groups giveg' by v(t, y)|y(t). Herey : R — G is

a curve on a Lie group andis a map into the corresponding Lie algebra. This Lie algebra is to be
interpreted as the set of right invariant vector fields.

The generalisation of Runge-Kutta methods of odand higher on this class of problems makes
the introduction of correction functions necessary. Here we consider the ajgpliohextrapola-

tion methods on this class of problems. An asymptotic expansion of the global error iraticadr
terms for symmetric methods is proved. The explicit midpoint rule is used as $ierhathod for

an extrapolation algorithm.

The new methods of orderand6 are compared with standard extrapolation procedures of the
same order.

Structural analysis for stochastic DAESs in circuit simulation
Renate Winkler
(Humboldt-Universit Berlin, Institut fir Mathematik, Germany)

Modeling electrical networks influenced by thermal noise leads to spedaltytgred differential-
algebraic equations (DAESs) disturbed by white noise. To understand these sistenesessary
to use the theory of (explicit) stochastic differential equations (SDEs)shg that this is only
possible if the noise sources do not disturb the constraints of the DAE. We then ebdstence
and uniqueness results for the solutions of stochastic DAEs of index 1 or 2. Simnaerlybtain
convergence results for a semi-implicit Euler-method for speciallycgired stochastic DAEs of
index 1 or 2.

We express the necessary conditions in terms of the topology of the electricakke#iterna-
tively, we discuss a model with colored noise sources.
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