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1 General Information

1. Conference Location and Lecture Rooms
The conference will take place in the lecture rooms A, B, and Z on the ground floor of the
Melanchthonianumsituated on theUniversiẗatsplatzin the centre of Halle.

Opening and closing of the seminar as well as plenary lectures (Monday to Fridaymorning,
except Tuesday) take place in lecture room B. In addition, the lecture rooms A and Zare
used for minisymposia (Tuesday morning) and contributed talk sessions (Monday, Tuesday,
and Thursday afternoon).

2. Conference Office and Registration
The conference office is also situated in theMelanchthonianum. The conference office is
open on Sunday, September 3, 2000 from 4 p.m. to 8 p.m., on Monday, Tuesday and Thurs-
day from 8 a.m. to 4 p.m., and on Wednesday and Friday from 8 a.m. to 12 a.m. You can
reach the conference office by phone (+49 (345) 5521045 or +49 (345) 5521048) and by fax
(+49 (345) 5521047). These lines are active from Sunday, September 3, 2000.

Please register in the conference office after your arrival. You will there also receive your
conference documents.

3. Time of Lectures and Discussion
Please note that the lecture times as given in the programme already include discussion time
of 5 minutes.

4. Coffee and Tea Breaks
Coffee and tea are provided during the morning and afternoon breaks.
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5. Lunch Break
A cafeteria is located in theJuridicum down the steps of theUniversiẗatsplatz. Further,
the Mensa Harzis a 5 minute walk away and around theMarktplatz there are different
restaurants. Please ask local participants or the staff in the conferenceoffice for further
information.

6. E-mail
There will be a computer with telnet and internet access available in the conference office.

7. Conference Dinner
The conference dinner will be held in the hotelSteigenberger Esprixin Halle–Neustadt on
Thursday, September 7, 2000 at 19.30. The meal is included in the conference fee; partici-
pating students and accompanying persons pay DM 25. The fee for the dinner is payable in
cash when registering in the conference office.

8. Guided Tour on Wednesday afternoon
There are no scientific sessions on Wednesday afternoon. Instead you can visit theArchäo-
logisches Museumof the university in theRobertinum. There will be a guided tour (English).
We meet at 2 p.m. in front of the conference office and the tour will take about 1 to 1.5 hours.

You can also use this afternoon to explore the city and its surrounding area with yourfriends
or by yourself.

9. Conference Proceedings
Selected papers will be published in a Special Issue of the JournalApplied Numerical Math-
ematics. Guest editors are B.P. Sommeijer, K. Strehmel, J.G. Verwer and R. Weiner.

Submitted conference papers must deal with original work not published elsewhere and will
be refereed according to the standard journal procedure.
Seehttp://www.elsevier.nl/locate/apnum for the statement of objectives.

All papers should be sent in triplicate to: Dr. B.P. Sommeijer
CWI
P.O. Box 94097
1090 GB Amsterdam
The Netherlands

Authors are encouraged to use the journal style files, see the given web address forinstruc-
tions. The restricted paper length is 20 style file pages.

The deadline for submission is December 1, 2000.
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2 Programme Overview

Monday, 4 September 2000

Room B

9.00 Opening Address
9.20 – 10.10 Jan G. Verwer

10.30 – 11.20 Claus Führer
11.20 – 12.10 Wenfried Lucht

14.00 – 14.25 Marc Spijker
14.30 – 14.55 Amelia Garcia
15.00 – 15.25 Jörg Wensch
15.45 – 16.10 David J. Lopez
16.15 – 16.40 Guido Vanden Berghe
16.45 – 17.10 Volker Grimm
17.15 – 17.40 Hans-Eberhard Scholz

Room A

Makky Jaya
Julia Novo
Mansour A. Al-Zanaidi
Javier de Frutos
Andy Georges
Vasily P. Shapeev
Natalia Borovykh

Room Z

Christian Grossmann
Zoltán Horváth
Larisa Piddubna
Marian Kwapisz
Zbigniew Bartoszewski
Mohammad R. Rahimpour
Vadim Azhmyakov

Tuesday, 5 September 2000

Room B

8.30 – 12.50 Minisymposium:
Partial Differential-
Algebraic Equations

14.30 – 14.55 Roland England
15.00 – 15.25 Inmaculada Higueras
15.45 – 16.10 Frank Cameron
16.15 – 16.40 René Lamour
16.45 – 17.10 Jürgen Sand
17.15 – 17.40 Katalin Balla

Room A

Minisymposium:
Atmospheric Transport-
Chemistry Problems

Alexander Ostermann
Karel in ’t Hout
Alf Gerisch
Róbert Horváth
Hrant Hovhannissian

Room Z

Minisymposium:
Parallel Methods for Differ-
ential Equations

Lidia Aceto
Angel Duran
Valeri A. Perminov
Faisal Fairag
Zdzislaw W. Trzaska
Sergey Nurmagambetov

Wednesday, 6 September 2000

Room B

8.30 – 9.20 Thomas Sonar
9.20 – 10.10 Roswitha März

10.30 – 11.20 Zdzislaw Jackiewicz
11.20 – 12.10 Stefan Vandewalle
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Thursday, 7 September 2000

Room B

8.30 – 9.20 Marlis Hochbruck
9.20 – 10.10 Philippe Chartier

10.30 – 11.20 Ken R Jackson
11.20 – 12.10 Cesar Palencia

14.00 – 14.25 Renate Winkler
14.30 – 14.55 Johannes Schropp
15.00 – 15.25 Caren Tischendorf
15.45 – 16.10 Carmen Arevalo
16.15 – 16.40 Brahim Benhammouda
16.45 – 17.10 Yauheni Sonets

Room A

Mari Paz Calvo
Mechthild Thalhammer
Roland Pulch
István Faragó
Joerg Sautter
Muhammed I. Syam

Room Z

Felice Iavernaro
Ivonne Sgura
Marnix Van Daele
Tanja Van Hecke
Manouchehr Parsaei
Alex Kolpakov

Friday, 8 September 2000

Room B

8.30 – 9.20 Willem Hundsdorfer
9.20 – 10.10 David F. Griffiths

10.30 – 11.20 Gerhard Starke
11.20 – 12.10 Gerald Warnecke
12.10 Concluding Address
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3 Scientific Programme

Monday, 4 September 2000

Room B
9.00 Opening Address by Karl Strehmel

Welcome by the rector of the Martin–Luther–University Halle–Witten berg
Magnifizenz Prof. Dr. W. Grecksch

Plenary Lectures

9.20 – 10.10 Jan G. Verwer
Numerical Time Integration of Air Pollution Models

10.10 – 10.30 — Break —

10.30 – 11.20 Claus Führer & Carmen Arevalo & Monica Selva
Variable Stepsize Extension of Multistep Formulas - A Review and new
Approaches

11.20 – 12.10 Wenfried Lucht
On quasi–linear PDAE’s with convection

12.10 – 14.00 — Lunch —

Contributed Talks

14.00 – 14.25 Marc Spijker
Are the Stability Estimates, in the Kreiss Matrix Theorem, Sharp ?

14.30 – 14.55 Amelia Garcia & Pablo Martin
New methods for oscillatory problems based on classical codes

15.00 – 15.25 Jörg Wensch
Extrapolation methods in Lie groups

15.25 – 15.45 — Break —

15.45 – 16.10 David J. Lopez & Pablo Martin & Amelia Garcia
A variable-stepsize variable-order multistep method for the integrationof per-
turbed linear problems

16.15 – 16.40 Guido Vanden Berghe& L. Ixaru & H. De Meyer
Exponentially-fitted Runge-Kutta methods: construction and implementation

16.45 – 17.10 Volker Grimm
Exponential Integrators for Classical Molecular Dynamics

17.15 – 17.40 Hans-Eberhard Scholz
Implicit Taylor series methods and stiff semi-linear initial value problems
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Room A Contributed Talks

14.00 – 14.25 Makky Jaya & Claus-Dieter Munz
Modular Implementation of Navier-Stokes Equation Solver on Arbitrary/Hybrid
Unstructured Meshes

14.30 – 14.55 Julia Novo & Javier de Frutos
Postprocessing the linear finite element method

15.00 – 15.25 Mansour A. Al-Zanaidi & M. M. Chawla
A linearly implicit one-step time integration scheme for second order nonlinear
hyperbolic equations

15.25 – 15.45 — Break —

15.45 – 16.10 Javier de Frutos& Julia Novo
A posteriori error estimation for evolutionary dissipative equations

16.15 – 16.40 Andy Georges & Marnix Van Daele
Acquiring a solution of the time-dependent Schrödinger equation using CP
methods

16.45 – 17.10 Vasily P. Shapeev& Leonid G. Semin
Adaptive Collocation and Least-Squares Method for Navier-Stokes Equations

17.15 – 17.40 Natalia Borovykh
Stability in the numerical solution of the heat equation with nonlocal boundary
conditions

Room Z Contributed Talks

14.00 – 14.25 Christian Grossmann & Zoltán Horváth
Two-sided enclosures for IVPs by means of bounding operators I: Construction
of bounding operators and convergence properties

14.30 – 14.55 Zolt án Horváth & Christian Grossmann
Two-sided enclosures for IVPs by means of bounding operators II: Application
to PDEs

15.00 – 15.25 Larisa Piddubna & Igor Cherevko
Approximations of coupled differential and difference equations by ordinary dif-
ferential equations

15.25 – 15.45 — Break —

15.45 – 16.10 Marian Kwapisz
On delay dependent error estimates for waveform relaxation methods for
differential-functional equations

16.15 – 16.40 Zbigniew Bartoszewski
Numerical verification of delay dependent error estimates for WRM for
differential-functional equations

16.45 – 17.10 Mohammad R. Rahimpour & A. Azrapour
Numerical Solution of a Nonlinear Model of Urea Hydrolysis Reactor

17.15 – 17.40 Vadim Azhmyakov
Newton-Type Method for Solving Non-regular Equations
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Tuesday, 5 September 2000

Room B
Minisymposium: Partial Differential–Algebraic Equations (Karl Strehmel)

8.30 – 9.05 Volker Mehrmann & Thilo Penzl & Fredi Tröltzsch
Control of heterogeneous systems of partial and differential algebraic systems

9.05 – 9.40 Martin Arnold
Distributed time integration of coupled differential-algebraic systems

9.40 – 10.15 Michael Günther
Generalized descriptor formulation in electrical network analysis

10.15 – 10.30 — Break —

10.30 – 11.05 Wieslaw Marszalek
A boundary value problem for linear PDAEs

11.05 – 11.40 Bernd Simeon
A weak descriptor form for constrained motion in elastodynamics

11.40 – 12.15 Jens Lang
Adaptive Multilevel ROW-Methods for Nonlinear PDAEs

12.15 – 12.50 Werner M. Seiler
Involution Analysis of Semi-Discretisations of a Class of Linear Partial Differ-
ential Systems

12.50 – 14.30 — Lunch —

Contributed Talks

14.30 – 14.55 Roland England & René Lamour
Integration of Index-One Differential-Algebraic Equations using Dichotomically
Stable One-Step Formulae

15.00 – 15.25 Inmaculada Higueras
On numerical contractivity for DAEs

15.25 – 15.45 — Break —

15.45 – 16.10 Frank Cameron & Mikko Palmroth & Robert Piché
Low-order SDIRKS for DAEs

16.15 – 16.40 René Lamour & Diana Estevez Schwarz
The Computation of Consistent Initial Values for Nonlinear Index-2 Differential-
Algebraic Equations

16.45 – 17.10 Jürgen Sand
On Implicit Euler for High-Order High-Index DAEs

17.15 – 17.40 Katalin Balla
Transfer equations and linear boundary value problems for DAEs
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Room A
Minisymposium: Atmospheric Transport–Chemistry Problems (Jan G. Verwer)

8.30 – 9.05 Martin Berzins & A. Tomlin & S. Ghorai
Unstructured Adaptive Mesh Solvers for Atmospheric Dispersion Problems

9.05 – 9.40 Mike Botchev & Jan G. Verwer
Improving Approximate Matrix Factorizations for implicit time integrationin
Air Pollution Modelling

9.40 – 10.15 Oswald Knoth & Ralf Wolke
Coupled integration of chemistry and transport in microscale air quality
modelling

10.15 – 10.30 — Break —

10.30 – 11.05 Stig Skelboe
Partitioning techniques for decoupled integration of chemical reaction equations

11.05 – 11.40 Bruno Sportisse & Rafik Djouad
Simulation of aqueous-phase chemistry in Air Pollution Modeling

11.40 – 12.15 Ralf Wolke & Oswald Knoth
Time-Integration of Multiphase Chemistry in Size-Resolved Cloud Models

12.15 – 12.50 Zahari Zlatev
Large-scale computations in air pollution modelling

12.50 – 14.30 — Lunch —

Contributed Talks

14.30 – 14.55 Alexander Ostermann
Stability of W-methods with applications to operator splitting

15.00 – 15.25 Karel in ’t Hout
On the contractivity of implicit-explicit linear multistep methods

15.25 – 15.45 — Break —

15.45 – 16.10 Alf Gerisch & Jan G. Verwer
Operator Splitting and Approximate Factorization for Taxis-Diffusion-Reaction
Models

16.15 – 16.40 Róbert Horváth
On the Monotonicity Conservation of the Numerical Solution of the One-
Dimensional Heat Equation

16.45 – 17.10 Hrant Hovhannissian
Five-pointed difference schemes for the equations of parabolic type
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Room Z
Minisymposium: Parallel Methods for Differential Equations (Rüdiger Weiner)

8.30 – 9.05 Luigi Brugnano & Cecilia Magherini & Donato Trigiante
Blended Block Implicit Methods for the Numerical Solution of ODEs

9.05 – 9.40 Francesca Mazzia& Felice Iavernaro
Generalized Backward Differentiation Formulae for parallel implementation

9.40 – 10.15 Jason Frank & Pieter J. van der Houwen
Parallel Extended BDF Methods

10.15 – 10.30 — Break —

10.30 – 11.05 Bernhard A. Schmitt & Rüdiger Weiner & Helmut Podhaisky
On the stability of two-step-W-methods

11.05 – 11.40 Helmut Podhaisky & Bernhard A. Schmitt & Rüdiger Weiner
Numerical Experiments with parallel Two-step W-methods

11.40 – 12.15 Nguyen Cong & Nguyen Thi Hong Minh
Parallel PC iteration of pseudo RKN methods for nonstiff initial-value problems

12.15 – 12.50 Dana Petcu
Experiments with parallel methods for ODEs

12.50 – 14.30 — Lunch —

Contributed Talks

14.30 – 14.55 Lidia Aceto
The Pascal matrix and its relations with numerical methods for ODEs

15.00 – 15.25 Angel Duran & Miguel A. Lopez Marcos
Numerical behaviour of stable and unstable solitary waves

15.25 – 15.45 — Break —

15.45 – 16.10 Valeri A. Perminov
Numerical modeling forest fire spread initiation

16.15 – 16.40 Faisal Fairag
A Two-level Finite Element Method for the streamfunction form of the Navier-
Stokes Equations

16.45 – 17.10 Zdzislaw W. Trzaska
Solving Partial Differential Equations with Using Power Polynomials

17.15 – 17.40 Sergey Nurmagambetov
Quantum motion numerical calculation for axial channeling
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Wednesday, 6 September 2000

Room B
Plenary Lectures

8.30 – 9.20 Thomas Sonar
From Finite Volume Approximations to Meshless Collocation for Hyperbolic
Conservation Laws

9.20 – 10.10 Roswitha März
On properly formulated differential-algebraic systems

10.10 – 10.30 — Break —

10.30 – 11.20 Zdzislaw Jackiewicz
Construction and Implementation of General Linear Methods for Ordinary Dif-
ferential Equations

11.20 – 12.10 Stefan Vandewalle
Multigrid dynamic iteration methods for delay differential equations
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Thursday, 7 September 2000

Room B
Plenary Lectures

8.30 – 9.20 Marlis Hochbruck
Exponential integrators

9.20 – 10.10 Philippe Chartier & R.P.K. Chan & A. Murua
Post-projected methods for index-2 DAEs

10.10 – 10.30 — Break —

10.30 – 11.20 Ken R Jackson& Ned Nedialkov
Validated Methods for IVPs for ODEs

11.20 – 12.10 Cesar Palencia
On the numerical recovery of holomorphic mappings and some applications to
ill-posed problems

12.10 – 14.00 — Lunch —

Contributed Talks

14.00 – 14.25 Renate Winkler
Structural analysis for stochastic DAEs in circuit simulation

14.30 – 14.55 Johannes Schropp
Qualitative Properties of Discretizations for Index 2 DAE’s

15.00 – 15.25 Caren Tischendorf
DAE Structure and Index in Dependence on MOSFET Modelling in Circuit
Simulation

15.25 – 15.45 — Break —

15.45 – 16.10 Carmen Arevalo & Steven Campbell
Unitary Coordinate Partitioning for General DAE Integrators

16.15 – 16.40 Brahim Benhammouda
A Partial Differential-Algebraic Equations Approach for Elastic Rods

16.45 – 17.10 Yauheni Sonets& V. V. Bobkov
Multistage algorithms for numerical solution of ODEs
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Room A Contributed Talks

14.00 – 14.25 Mari Paz Calvo & Cesar Palencia
Avoiding the order reduction of Runge-Kutta methods for linear initial boundary
value problems

14.30 – 14.55 Mechthild M. F. Thalhammer & C. Gonzalez & A. Ostermann & C. Palencia
The dynamical behaviour of Runge-Kutta time discretizations for nonlinear
parabolic problems near an equilibrium point

15.00 – 15.25 Roland Pulch
A method of characteristics for solving multirate partial differential equations in
radio frequency application

15.25 – 15.45 — Break —

15.45 – 16.10 István Faragó & C. Palencia
Sharpening the stability bound in the maximum-norm of the Crank-Nicolson
scheme for one-dimensional heat equation

16.15 – 16.40 Joerg Sautter
Strategies for the Numerical Solution of the Navier-Stokes Equations

16.45 – 17.10 Muhammed I. Syam
Path Following-Collocation Method for Solving Burger’s Equation

Room Z Contributed Talks

14.00 – 14.25 Felice Iavernaro& Francesca Mazzia
Block Boundary Value Methods used as General Linear Methods

14.30 – 14.55 Ivonne Sgura & Francesca Mazzia
Numerical Approximation of Nonlinear BVPs by means of BVMs

15.00 – 15.25 Marnix Van Daele & J. R. Cash
A new method to solve first order Systems of nonlinear two-point boundary value
problems

15.25 – 15.45 — Break —

15.45 – 16.10 Tanja Van Hecke& Marnix Van Daele
Accuracy improvement with RKN methods

16.15 – 16.40 Manouchehr Parsaei
Coupled High Order Boundaries in Numerical Solution of Hyperbolic Equations

16.45 – 17.10 Alex Kolpakov
A second-order differential-finite-differences model
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Friday, 8 September 2000

Room B
Plenary Lectures

8.30 – 9.20 Willem Hundsdorfer
Splitting with Stabilizing Corrections

9.20 – 10.10 David F. Griffiths & I. Garrido & B. Ayuso
Mixed finite element models: instability and its consequences

10.10 – 10.30 — Break —

10.30 – 11.20 Gerhard Starke
Galerkin Least-Squares Methods for Parabolic Problems: Adaptivity in Space
and Time

11.20 – 12.10 Gerald Warnecke
Multiscale Problems in Numerics for Hyperbolic Conservation Laws

12.10 Concluding Address
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4 Abstracts of Plenary Lectures

Post-projected methods for index-2 DAEs
Philippe Chartier & R.P.K. Chan & A. Murua
(INRIA, Campus Universitaire de Beaulieu, RENNES, France)

A new projection technique for Runge-Kutta methods applied to index-2 differential algebraic is
presented in which the numerical approximation is projected only when an output is required. It
is shown that for methods that are strictly stable at infinity, the order of convergence is unaffected
compared to standard projected methods. Gauss methods, for which this technique isof special
interest when some symmetry is to be preserved, are studied into more detail.

Variable Stepsize Extension of Multistep Formulas - A Review and new Approaches
Claus Führer & Carmen Arevalo & Monica Selva
(Lund University, Centre of Mathematical Sciences, Sweden)

Multistep methods are classically constructed by specially designed difference operators on an
equidistant time grid. To make them practically useful, they have to be implemented by varying
the step size according to some error control algorithm. It is well known how toextend Adams and
BDF formulas to a variable step size formulation. In this talk we will discuss various possibilities
to extendk-step methods of orderk+1 in general. We will start from ideas developed by Skeel in
the 70s and present some new results and approaches.

Mixed finite element models: instability and its consequences
David F. Griffiths & I. Garrido & B. Ayuso
(University of Dundee, UK)

This talk will address several issues relating to stability of mixedfinite element approximations of
elliptic systems. We will extend recent work of Babus̆ka and Narasimhanon a one-dimensional
problem and give simple proofs establishing the relationship between instability in the Babus̆ka–
Brezzi sense and rates of convergence. This model also allows clear illustrations of different stabi-
lization techniques and their effects on convergence rates.
The second part of the talk will focus on mixed finite elements for the Stokes equations. We shall
look at the way in which the one-dimensional results may be interpreted in this setting, on the
influence of boundary data in unstable situations as well as the relationship betweenthe spectra of
continuous and discrete operators associated with questions of stability.

Exponential integrators
Marlis Hochbruck
(Mathematisches Institut, Heinrich-Heine Universität Düsseldorf, Germany)

An alternative to implicit methods for solving large systems of stiff or oscillatory differential equa-
tions is using exponential integrators. In contrast to implicit schemes, no solution of nonlinear
systems of equations is required; only function evaluations and matrix vector products with the
Jacobian. In this talk we intend to give an overview on several variants ofexponential integrators.
We start from a general purpose code constructed for the solution of large systems of time-
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dependent differential equations. The basic idea of our exponential integrators is to solve a typical
prototype of differential equation exactly. For instance, the general purpose code integrates affine
linear equationsy0 = Ay + b exactly. The implementation requires approximating the product of
a matrix function, in this case an exponential function, and a vector. In our codes, suitable Krylov
subspace methods are used for this task.
For special applications leading to oscillatory problems (e.g. second-order differential equations
in which high-frequency oscillations are generated by a linear part, and Schrödinger equations
with time-dependent Hamiltonian) we show that suitable exponential integrators allow time steps
much larger than the inverse of the highest frequency and we present convergence results which
are independent of the smoothness of the solution.

Splitting with Stabilizing Corrections
Willem Hundsdorfer
(CWI, The Netherlands)

In this talk several splitting methods are discussed that are based on Stabilizing Corrections, lead-
ing to splitting schemes with internal consistency for initial-boundary valueproblems for PDEs.
Due to the internal consistency, given boundary data can be used directly in the scheme and steady
states of the PDE remain steady states of the numerical scheme.
The most simple method of this kind consists of combinations of Euler and Trapezoidal Rule steps.
For the heat equation with dimensional splitting these methods are related to classical ADI schemes
of Douglas, Gunn and others. In this talk more general splittings for convection-diffusion-reaction
equations are considered.
To obtain more accuracy and a better treatment of explicit terms severalextensions of the simple
Stabilizing Correction scheme will be regarded and analyzed. The relevanceof the theoretical
results is tested for convection-diffusion-reaction equations.

Construction and Implementation of General Linear Methods for Ordinary Differential Equa-
tions
Zdzislaw Jackiewicz
(Arizona State University, USA)

In the first part of this lecture we will give the overview of different approaches to the construction
of diagonally implicit multistage integration methods for both nonstiff and stiff differential systems
of ordinary differential equations. The identification of high order methods with appropriate sta-
bility properties requires the solution of large systems of nonlinear equations for thecoefficients of
the methods. For low orders these systems can be generated and solved by symbolic manipulation
packages such as MATHEMATICA or MAPLE. For moderate orders these systems can be gen-
erated symbolically in FORTRAN format and then solved by algorithms basedon the homotophy
appoach such as PITCON, ALCON, or HOMEPACK. For high orders the approach to thecon-
struction of such methods is based on the computation of the coefficients of the stability function
by a variant of the Fourier series method and then solving the resulting large systems of polyno-
mial equations of high degree by least squares minimization with the aid of MINPACK subroutines
based on Levenberg-Marquardt algorithm. Using these approaches both explicit and implicit meth-
ods were constructed up to the order eight with good stability properties (Runge-Kutta stability for

15



explicit methods,A-stability andL-stability for implicit methods).
In the second part of this talk we will address different issues related tothe implementation of
general linear methods. They include selection of initial stepsize and starting values, computa-
tion of Nordsieck representation, efficient and reliable estimation of the local discretization errors
for nonstiff and stiff equations, step size ond order changing strategies, construction of contin-
uous interpolants, and updating vector of external approximations to the solution. Experiments
with variable step variable order experimental Matlab codes for both nonstiff and stiff differen-
tial systems on interesting test problems will be presented and compared with appropriate codes
from Matlab ODE suite. These experiments demonstrate the high potential of diagonally implicit
multistage integration methods, especially for stiff systems of differential equations.

Validated Methods for IVPs for ODEs
Ken R. Jackson& Ned Nedialkov
(Computer Science Dept., University of Toronto, Canada)

Compared to standard numerical methods for initial value problems (IVPs) for ordinary differential
equations (ODEs), validated methods have two important advantages: if they return a solution to a
problem, then

1. the problem is guaranteed to have a unique solution, and

2. an enclosure of the true solution is produced.

We survey validated methods for the numerical solution of IVPs for ODEs, describe several meth-
ods in a common framework, and identify areas for future research.
Papers on which this talk is based can be found athttp://www.cs.toronto.edu/˜krj

On quasi–linear PDAE’s with convection
Wenfried Lucht
(Martin-Luther-Universiẗat Halle-Wittenberg, Germany)

In the lecture, some aspects of systems of partial differential algebraicequations (PDAEs) foru of
quasi–linear type with convection terms,Aut +Buxx + C[u]ux +Du =f(t; x); t 2 It := (0; te); te > 0; x 2 
 � R;
will be discussed.u andf are of type u; f : It � 
 ! Rn ; n > 1; wheref (supposed to be
sufficiently smooth) is given.A; B; C[u] andD are real(n; n)�matrices where, for simplicity,A; B andD are assumed to be constant. All matrices may be singular, butA; B 6= 0 (in partic-
ular, there is at least one time derivative of a component ofu in the system).C[u] may depend
on u. Furthermore, it is supposed that there isz 2 Rn such thatC[z] 6= 0 (i.e. there is at least
one derivative of first order with respect tox of some component ofu). Typically, whenC[u]
is linear inu, the vectorC[u]ux describes physical convection. Terms of this form appear, e.g.,
in (one–dimensional) models based on continuum mechanics. An example used for illustration
comes from plasma physics wheren = 4 andrank(A) = rank(B) = 2; rank(C(z)) = 3 .
For systems given above we consider initial boundary value problems (IBVPs) (with
 = (0; 1))
and initial value problems (IVPs) (with
 = R). In both cases appropriate initial values written in
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the form u(0; x) = �a(x) + �c(x); x 2 
 or x 2 
, must be added, and for IBVPs, boundary
values of a similar form,u(t; x) = 	a(t; x)+	c(t; x); t 2 It; x 2 @
; are needed. The data
which can be prescribed arbitrarily are in�a; 	a. The consistent data are collected in�c; 	c.
First, the problem of determination of indexes of the PDAE is discussed. Since themethods of lin-
ear PDAEs (based on Fourier and Laplace transformations) cannot be applied to the PDAE given,
we determine the index by means of the invertibility of certain differential operators. The method
is illustrated by the PDAE from plasma physics.
Furthermore, some methods for the numerical solution of IBVPs by means of finite differences
are developed. First, a functional iteration for a semidiscretization of the system with time index�t = 1 is considered. It is shown by a fixed point argument that the method converges under
definite assumptions. However, the convergence is only local in time. Second, we consider the
numerical solution of IBVPs or IVPs by means of operator splitting methods combined with fac-
torizations. These methods are generalizations of fractional step techniques well known for the
numerical solution of classical time dependent partial differential equations. Among others, the
splitting methods are investigated for PDAEs with indexes�t = 1: Some theoretical results con-
cerning stability are given. The more difficult case�t = 2 is also mentioned.

In the last part of the lecture some results of numerical experiments are presented.

On properly formulated differential-algebraic systems
Roswitha März
(Humboldt-Universiẗat zu Berlin, Institut f̈ur Mathematik, Germany)

Beyond the scope of the formal integrability theory, an equationf(x0(t); x(t); t) (1)

with an everywhere singular leading Jacobianf 0y(y; x; t) is somehow inaccurately formulated. A
priori, neither an appropriate function space which the solutions should belong to nor properties
of the respective map representing the equation emerge from this. However,thinking on possible
generalizations such as PDAEs and control problems with (generalized) DAEs to be controlled one
should clear up the fundamental background rigorously.
Equations of the form f((Dx)0(t); x(t); t) = 0 (2)

with well-matched matricesf 0y(y; x; t) andD(t) are said to be properly formulated DAEs. The
matrix functionD precisely figures out all those derivatives of the unknown function that are
actually involved in the equation. Naturally, a solution should be a continuous functionx(:) having
a continuously differentiable part(Dx)(:).
Note that there is no need at all forD(t) to be a projector matrix. However, previous reformulations
of (1) like f((Px)0(t) � P 0(t)x(t); x(t); t) = 0 by means of projector functionsP (t) are of type
(2).
Quasilinear equationsA(t)x0(t) + b(x(t); t) = 0 are often rewritten as(Ax)0(t) + b(x(t); t)� A0(t)x(t) = 0; (3)
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or, equivalently, in type (2) formR(t)(Ax)0(t) + b(x(t); t)�R(t)A0(t)x(t) = 0;
whereR(t) denotes a projector onto imA(t).
Recent results on DAEs of the form (2) will be reported. In particular, a unifiedapproach to linear
DAEsA(Dx)0+Bx = 0 and their adjoint equationsD�(A�y)0�B�y = 0 (instead ofAx0+Bx = 0
and(A�y)0 � B�y = 0 formerly) is possible now. A consequence for an optimal control problem
will be discussed.

As far as numerical integration methods applied to (2) are concerned, it will beshown whether
resp. why a qualitatively correct reflection of the asymptotic solution behaviourmay be expected.

On the numerical recovery of holomorphic mappings and some applications to ill-posed
problems
Cesar Palencia
(Universidad de Valladolid, Spain)

A method for the numerical reconstruction of an analytical mapping from knowledge of approx-
imate values at a finite set of nodes is presented. This algorithm is shown to be helpful for the
numerical treatment of a variety of ill-posed problems: the backwards heat equation, the one side
heat equation and some problems in potential theory.

From Finite Volume Approximations to Meshless Collocation for HyperbolicConservation
Laws
Thomas Sonar
(TU Braunschweig, Germany)

We describe the design of essentially non-oscillatory and weighted essentially non-oscillatory finite
volume approximations to hyperbolic conservation laws on triangular meshes. Emphasis is laid on
the recovery process which is essential not only for high order of accuracy but also for stability.
This class of methods is now fairly well understood from a computational point of view,although
a convergence analysis for general hyperbolic systems is still missing.
In contrast, meshless collocation methods are still in a state of infancy.Basic questions concerning
conservativity, order of accuracy, etc. are unanswered. However, in employing modern tools from
numerical analysis like nonlinear anisotropic dissipation terms and multiscale analysis of discrete
data there is hope that this class of schemes can be developed into numerical workhorses in the
near future.

Galerkin Least-Squares Methods for Parabolic Problems: Adaptivity in Space and Time
Gerhard Starke
(University of Essen, Germany)

In this talk, a class of Galerkin least-squares methods for parabolic initial-boundary value prob-
lems is presented and analyzed. These methods are based on the minimization of aleast-squares
functional for an equivalent first-order system over time and space with respect to suitable discrete
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spaces. One of the most important features of the least-squares methodology is the built-in a pos-
teriori estimator for the approximation error. This is a consequence of the least-squares functional
to the consistency error associated with a time-step, measured in an appropriate norm. For our
presentation, we focus our attention to the specific combination of piecewise linear, not neces-
sarily continuous, functions for the flux with continuous piecewise linears for the scalar variable
for the time discretization. The discretization in space uses standardH(div) andH1 conforming
finite element spaces, respectively. A detailed convergence analysis ofthese methods will be given
for linear parabolic problems. Moreover, we address the problem of identifying the components
in the least-squares functional associated with the discretization error in time and space, respec-
tively. This leads to adaptive strategies for the proper balance of time-step choice and spatial mesh
refinement.

Multigrid dynamic iteration methods for delay differential equations
Stefan Vandewalle
(Katholieke Universiteit Leuven, Dept of Computer Science, Belgium)

The dynamic iteration method, also called waveform relaxation method, extendsthe applicabil-
ity of classical iterative methods, such as Jacobi, SOR, and multigrid, to systems of differential
equations. The method offers great potential for good parallel performance. It has been applied
primarily to solve systems of equations derived by discretization of parabolic PDEs. The conver-
gence theory of the method for that type of problem is nowadays well understood.
Recently, the method was applied to delay ordinary and partial differentialequations. Such equa-
tions arise for example in population dynamics, in numerical control, and in the studyof nonlinear
materials with memory. Earlier work concentrated on Jacobi- and Gauss-Seidel type iterations. In
this talk we will concentrate on the multigrid acceleration.
First the type of equation that is considered will be defined. It will be shown that delay PDEs
exhibit quite different stability characteristics than classical partial differential equations. Then,
the application of waveform relaxation and its multigrid acceleration will be illustrated by means
of a number of examples. Special emphasis will be put on techniques for variable coefficient
problems. Finally, the convergence of the method will be studied by using a two-level Fourier
analysis technique.

Numerical Time Integration of Air Pollution Models
Jan G. Verwer
(Center for Mathematics and Computer Science (CWI), The Netherlands)

Partial differential equations of the advection-diffusion-reaction type lie at the heart of all modern
air pollution models. These PDEs are used to describe advective transport ingiven wind fields,
turbulent/diffusive transport, chemical reactions, emissions and depositionsof many natural and
anthropogenic atmospheric species. The equations are time-dependent, three-space dimensional
and nonlinearly coupled through the chemical reactions. Numerical research isof high relevance
since modern models require excessive amounts of computer time so that efficient, state-of-the-art
numerical algorithms are needed.
In this lecture we will first introduce the application field. After this introduction, several of the
most important numerical algorithms in use will be discussed, including the popular operator split-
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ting method and a Rosenbrock method from the stiff ODE field which provides an alternative to
operator splitting by means of approximate matrix factorization. The performance of these meth-
ods will be illustrated using data from a real model. If time permits we will also discuss the Rosen-
brock method for the spherical Shallow Water Equations. The SWEs are an important prototype
for numerical research into atmospheric circulation.

Multiscale Problems in Numerics for Hyperbolic Conservation Laws
Gerald Warnecke
(Otto-von-Guericke-Universität Magdeburg, Germany)

There is an increased demand for numerical calculations of solutions to problemsmodeled by
hyperbolic systems of conservation laws with additional dissipative terms andstiff source terms.
These type of problems arise for instance when considering inviscid flows with combustion or
mixing multi-phase flows. These problems a characterized by the presence of widely varying
length and time scales, e.g. characteristic speeds, shocks, boundary layers, reaction zones. Small
scales may only be present locally in the solution. The choice of minimal spatialmesh lengths and
time steps leads to a cut-off of smaller scales. Adaptive methods, here not being restricted to mesh
refinement only, are needed to take small scale information into account incase this influences the
larger scales being resolved in the numerical calculation.

The talk will focus on the use of adaptive methods for overcoming well known problemsarising
in numerical calculations. Typical unwanted features are wrong shock speeds andthe appearance
of unphysical states. Depending on the nature of the applications and various priorities, different
ways of handling these problems must be considered in order to guarantee correct and efficient
calculations. The use of mesh adaptive methods employing a posteriori error estimation techniques
for unsteady problems is just one possible option. Substructured solvers may be an alternative in
some instances.

A fundamental goal in numerics is to guaranteeaccuracyas well asefficiency. This is also what is
essentially behind the issue of stiffness. Numerical methods may become highlyinefficient if the
problem changes due to a small parameter. Numerics has to react to a singular limit once the limit
is reached within prescribed accuracy, whereas the underlying analytical problem only changes in
the limit. This is where especially error estimation, stability analysis and solver adaption play an
important role.

An adaptive numerical scheme contains two main elements. The first is theadaption criterion
which tells us if and where we want to modify our numerical solution. This could be ana poste-
riori error indicator, a stiffness detector or a feature detector, e.g. shock indicator or a symmetry
indicator. The criterion itself usually tells us very little about how we want to modify the solution
in order to overcome a detected problem. This is the second element in an adaptive algorithm,
namely theadaption method. There is a wide range of possibilities. We know various forms of
local or global mesh adaption. One can adapt the solution space, for instance to modifythe order
of the method. One can adapt solvers, e.g. by using flux limiters or by explicit/implicit switching.
An important question is whether the adapted solution just looks good or is actually better. A
long term goal of numerical analysis for CFD is to give us reliable criteria and to link these to the
methods employed, i.e. to prove that the solution is generally improved by the adaptive method.

The theory of a posteriori error estimation using residuals is a key element ofthe validation of
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numerical calculations as well as useful tool in adaptive algorithms. By ’a posteriori’ we mean
that the information given by the estimator is calculated from the computed solution. Assuming
that the model equations adequately represent the physical problem, we need such a tool in order
to assess whether solutions to the equations are well approximated by the scheme used. We need
it to detect stiffness. We also need it in adaptive algorithms in order toefficiently distribute the
workload in demanding calculations. Though adaptive methods based on heuristic error indicators
are highly successful in CFD, the mathematical theory is still in its infancy. The concepts are
generally inferred from the better developed theories for elliptic and parabolic problems, where a
rigorous theory is possible.
The presentation will expand on the issues raised above and present recent workon adaptive flow
calculations as well as a solver for detonation waves that avoids wrong shock speeds and spurious
physical states.
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5 Abstracts of Minisymposia Talks

5.1 Atmospheric Transport–Chemistry Problems

Unstructured Adaptive Mesh Solvers for Atmospheric Dispersion Problems
Martin Berzins & A.Tomlin & S.Ghorai
(The University of Leeds, UK)

It has been shown that the accuracy of solution for atmospheric pollution dispersionproblems is
highly dependent on the computational mesh and in particular the degree of resolution. Coarse
meshes cannot resolve the underlying structure and uniformly fine meshes are prohibitively expen-
sive for reactive flow problems with a large number of chemical species.
A solution to this problem is to provide extra resolution of the mesh where large solution errors or
steep concentration gradients exist, leaving a coarse resolution elsewhere. In this way computa-
tional resources are utilised where they provide significant gains in accuracy. This talk presents a
3-D finite volume reactive flow model based on a transient adaptive unstructuredmesh. The use of
tetrahedral mesh elements allows fully 3-D adaptivity and the flexibilityto enable the code to han-
dle complex structures arising from source terms of very different spatialscales. The underlying
algorithm makes use of positivity preserving finite volume methods, fast iterative solvers, mesh
adaptation and parallel computing.
Preliminary studies of dispersion from a single source in stable, unstable and neutral boundary
layers have been carried out. The results show the efficiencies of using adaptive grids in order to
represent the accurate structures of the plume in the boundary layer and also the advantage of this
method compared to fixed methods for mesh refinement. Some comments about the interpolation
of input data such as wind fields onto unstructured meshes are also made.
Examples will be described for a number of different pollution dispersion problems covering a
range of meteorological conditions. Results will demonstrate that the adaptive model is capable of
achieving accuracy close to that of fixed high resolution meshes at a fractionof the computational
cost.

Improving Approximate Matrix Factorizations for implicit time integrat ion in Air Pollution
Modelling
Mike Botchev & J.G.Verwer
(CWI, Amsterdam, The Netherlands)

For a long time operator splitting was the only computationally feasible way of implicit time inte-
gration in large scale Air Pollution Models. A recent attractive alternative are Rosenbrock schemes
combined with Approximate Matrix Factorization (AMF) [1]. With AMF, linear systems arising
in implicit time stepping are solved approximately in such a way that the overall computational
costs per time step are not higher than those of splitting methods [1,2].
We propose and discuss two new variants of AMF. The first one is aimed at yet further reduction
of costs as compared with conventional AMF. The second variant of AMF provides in certain
circumstances a much better approximation to the inverse of the linear system matrix than standard
AMF and requires the same computational work.
[1] J.G. Verwer, E.J. Spee, J.G. Blom and W. Hundsdorfer, A second order Rosenbrock method
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applied to photochemical dispersion problems, SIAM J. Sci. Comput. 20, 456–480 (1999).
[2] P.J. van der Houwen and B.P. Sommeijer, Approximate factorization for time-dependent partial
differential equations, to appear in J. Comput. Appl. Math. (2000).

Coupled integration of chemistry and transport in microscale air quality modelling
Oswald Knoth & Ralf Wolke
(Institute of Tropospheric Research, Leipzig, Germany)

We compare different time integration methods for modelling atmospheric chemistry transforma-
tions inside urban street canyons. The necessary wind and dispersion fields are simulated simul-
taneously by a microscale atmospheric fluid model with a spatial resolution between 1-5 m or
taken as a snapshot from this model. Since the transport time scale for this modelapplication is
in the range of 1 second integration schemes proposed for mesoscale or long range transport may
be not appropriate. We will focus on low order implicit methods with an iterative solution of the
resulting linear systems. Depending from the time scales and stiffness of the different processes
involved the use of approximate Jacobian matrices is investigated. Parallel implementation aspects
are discussed.

Partitioning techniques for decoupled integration of chemical reaction equations
Stig Skelboe
(University of Copenhagen, Denmark)

The chemical reaction equations are often partitioned into subsystems to permit more efficient
numerical solution. A partitioned system can be solved using various strategies such as the Euler
Backward Iterative method (block Gauss-Seidel) or waveform relaxation.
While these methods iterate until convergence and therefore give identical results to the underlying
integration formulas, the decoupled implicit Euler and BDF2 methods presented in this talk avoid
the relaxation until convergence. This strategy is, in general, more efficient than the two above
mentioned methods or classical implementations. However, a poor partitioning will jeopardize the
accuracy or even the stability of the discretization.
This talk presents partitioning techniques which permit the use of just one or two relaxation itera-
tions in the decoupled integration formula while maintaining accuracy and stability.
The partitioning techniques and decoupled implicit integration formulas will be demonstrated for
a system of 56 chemical reaction equations in an air pollution model.

Simulation of aqueous-phase chemistry in Air Pollution Modeling
Bruno Sportisse& Rafik Djouad
(ENPC- CEREVE, France)

Regional Air Pollution Models describe the time and space evolution of some tracegases through
Reaction-Diffusion-Advection PDEs subject to appropriate Boundary Conditions.
We describe here the simulation of aqueous-phase chemistry. The interfacial transfer between
gaseous and aqueous phases has indeed to be taken into account since this may strongly influence
the concentrations of gas-phase species.
We focus on numerical and mathematical issues: what is the validity of the lumped parameter
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assumption (due to the large values of molecular diffusivities) ? How to solvethe set of coupled
stiff ODEs ? How to reduce this system ? What is the sensitivity wrt some physical parameters
(such as the radius of aqueous droplets) ?

Time-Integration of Multiphase Chemistry in Size-Resolved Cloud Models
Ralf Wolke & Oswald Knoth
(Institute of Tropospheric Research, Leipzig, Germany)

An important subject of atmospheric chemistry is to assess with more accuracy the role of clouds on
pollutants. The existence of cloud drops leads to a transfer of chemical species between the gaseous
and aqueos phases. Species concentrations in both phases are modified by chemical reactions and
by this phase transfer. The model equations resulting from such multiphase chemical systems are
nonlinear, highly coupled and extremely stiff depending on the time of the day. In the paper we
investigate several numerical approaches for treating such processes. The droplets are subdivided
into several classes. The very fast dissociations in the aqueous–phase chemistry are treated as
forward and backward reactions. The aqueous–phase and gas–phase chemistry, the mass transfer
between the different droplet classes among themselves and with the gas phaseare integrated
in an implicit and coupled manner by the second order BDF method. For this part we applya
modification of the code LSODE with an adapted step size control and a special linear system
solver. This direct sparse solver exploits the special structure of the equations. Furthermore we
investigate an approximate matrix factorization which is related tooperator splitting at the linear
algebra level. The sparse Jacobians are generated explicitly and stored ina sparse form. The
efficiency and accuracy of our time–integration schemes is discussed for four multiphase chemistry
systems of different complexity and for a different number of droplet classes.

Large-scale computations in air pollution modelling
Zahari Zlatev
(National Environmental Research Institute, Roskilde, Denmark)

Air pollution models are described mathematically by systems of partial differential equations
(PDEs). By using different discretizations of the spatial derivatives and different splitting tech-
niques, the systems of PDEs are reduced to several large systems of ordinary differential equations
(ODEs), which have to be treated numerically at every time-step. Thenumber of equations in ev-
ery ODE system is equal to the product of the number of grid-points and the number of chemical
species. This number is normally very large; up to several millions. If thetime-interval is long,
then the number of time-steps is also very large; up to several thousands. Finally, many scenarios
with different values of some key parameters have to be run. This explains why the use of efficient
numerical methods and parallel computers is crucial in the treatment of large-scale air pollution
models. The choice of the numerical methods and the organization of the parallel computations
will be discussed in this talk.
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5.2 Partial Differential–Algebraic Equations

Distributed time integration of coupled differential-algebraic systems
Martin Arnold
(DLR German Aerospace Center, Vehicle System Dynamics Group Oberpfaffenhofen,Germany)

The termpartial differential-algebraic equation(PDAE) summarizes various types of coupled
instationary differential equations (ordinary and partial differential equations, differential-algebraic
systems). The increasing interest in the analysis and efficient numericalsolution of such coupled
systems is mainly motivated by complex technical applications that require the coupled simulation
of qualitatively different physical phenomena.
Typically the overall system consists of a (small) finite number of subsystemsthat are coupled
by source terms and/or boundary conditions. The numerical solution of PDAEs combines space
discretization (performed, e. g., by FEM or FDM) and time discretization. In the talk we focus
on thetime integration of the coupled system that may be based on a coupling of standard time
integration methods for the subsystems.
In this modular approach the time integration for the overall system isdistributedto several sep-
arate integration methods for the individual subsystems. Classical techniques from the theory of
ordinary differential equations are the use of different time steps in different subsystems (multi-
rate approach), the coupling of different time integration methods (multi-method approach), and
the iterative refinement by waveform relaxation or dynamic iteration methods.
In the application to more complex coupled systems like coupled differential-algebraic systems
or PDAEs these classical techniques may, however, result in exponential instability. Additional
projection steps may be necessary to satisfy somecontractivity conditionsthat guarantee stability
and convergence of the distributed time integration.
The results of the error analysis are applied to the dynamical simulation of coupled mechanical
systems.

Generalized descriptor formulation in electrical network analysis
Michael Günther
(Universiẗat Karlsruhe (TH), Fachbereich Mathematik, IWRMM, Germany)

To cover parasitic and second order effects in network analysis, a refineddescription based on mod-
els of partial differential equations can overcome problems due to higher and high index descriptor
formulations, which are caused by coupling controlled sources of arbitrary type. This ansatz gen-
eralizes the descriptor formulation to initial-boundary value problems of coupledsystems of partial
differential (PDEs) and differential-algebraic (DAEs) equations, for short systems of partial differ-
ential algebraic equations (PDAE systems). With interconnected electrical circuits as an example
in mind, we analyze the analytical properties of these systems with respect to existence, unique-
ness and sensitivity. Connections can be derived to dynamic extended saddle-point problems, with
constraint currents in the role of Lagrangian multipliers. Generalizing the concepts of perturbation
index for DAEs and a-priori estimates for PDEs, we can analyze the impact ofsemidiscretization
on the approximate DAE systems. We will see that some companion models for interconnects,
which can be regarded as a-priori non-adaptive semidiscretizations with respect to space, lead to
an artificial deregularization or regularization, resp., of the underlying PDAEsystem.

25



Adaptive Multilevel ROW-Methods for Nonlinear PDAEs
Jens Lang
(ZIB Berlin, Germany)

In this talk, we concentrate on nonlinear PDAEs which can be written in the formB(x; t; u)@tu = r � (D(x; t; u)ru) + F (x; t; u;ru)
with suitable boundary and initial conditions. The vector–valued solutionu = (u1; : : : ; um)T is
supposed to be unique and temporally smooth, at least after an initial transitionphase. In order to
solve such systems efficiently, an adaptive algorithm is proposed, where linearly implicit methods
of Rosenbrock–Wanner type in time are coupled with multilevel finite elements inspace. A poste-
riori error estimates are used to assess the local discretization errors and to choose time steps and
mesh sizes automatically during the integration.
Practically relevant applications that arise in today’s semiconductor–device fabrication, fluid dy-
namics, and porous media modelling are presented to illustrate the performanceof the proposed
method.

A boundary value problem for linear PDAEs
Wieslaw Marszalek
(DeVry Institute of Technology, USA)

We analyze a boundary value problem for linear partial differential algebraic equations, or PDAEs,
by using the method of separation of variables. The analysis is based on the Kronecker-Weierstrass
form of the matrix pencil[A;��nB]. This BVP PDAE problem differs in many ways from the con-
ventional BVPs considered in the literature on DAEs. A new theorem is provedand two illustrative
examples are given.

Control of heterogeneous systems of partial and differential algebraic systems.
Volker Mehrmann & Thilo Penzl & Fredi Tröltzsch
(Fakult. f. Mathematik, TU Chemnitz, Germany)

We consider control problems for generalized state-space systemsE _x(�) = Ax(�) +Bu(�)
with output equation y(�) = Cx(�)
arising from the semi-discretization of heterogeneous systems of partial differential equations and
algebraic equations.
HereE;A 2 Rn;n,B 2 Rn;m, andC 2 Rq;n, are large and sparse , and the input/output dimensionsm andq are small.
We use model reduction techniques based on the balanced truncation method to derive asmall scale
model from which we compute the optimal feedback control and then use this feedback control for
the large scale problem.
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The necessary Lyapunov equations are solved iteratively and approximately by the low rank cyclic
Smith method which is justified by the large decay of the singular values of the solution of the
Lyapunov equation.

Involution Analysis of Semi-Discretisations of a Class of Linear Partial Differential Systems
Werner M. Seiler
(Universiẗat Mannheim, Germany)

We study a class of non-normal, linear, first order systems of partial differential equations. Typ-
ical representatives consist of a hyperbolic evolution system and some elliptic constraints (like
Maxwell’s equations of electrodynamics). We compare the completion to involution of the origi-
nal system of partial differential equations with the completion of differential algebraic equations
arising from it by semi-discretisation. Somewhat surprisingly, it turns out that the condition for
involution are the same in both cases. Thus the stronger concept of involution and not just formal
integrability (i.e. the absence of integrability conditions) is decisive for thenumerical integration
of general systems of partial differential equations.

A weak descriptor form for constrained motion in elastodynamics
Bernd Simeon
(University of Karlsruhe, Germany)

Constrained mechanical systems including both rigid and elastic bodies are a focus of current re-
search in computational mechanics. They meet the increasing demand for refined simulation in
vehicle dynamics, robotics, and in air- and spacecrafts. While rigid bodies form discrete sys-
tems in space and are easily modelled by differential-algebraic equations, their elastic counterparts
satisfy the partial differential equations of elastodynamics. Mutual coupling is accomplished by
constraints formulated for isolated spatial points or parts of the boundary.
The talk presents a general framework for the treatment of constraints in elastodynamics and in-
troduces the notion of aweak descriptor formwhich comprises both rigid body systems and mixed
systems and which can be considered as a descriptor form model in both space and time. With
respect to space discretization, there is a connection to mixed and hybrid finite element methods
and to domain decomposition techniques. Using these techniques, a convergence proof forthe
space discretization is given.

5.3 Parallel Methods for Differential Equations

Blended Block Implicit Methods for the Numerical Solution of ODEs
Luigi Brugnano & Cecilia Magherini & Donato Trigiante
(Universit́a di Firenze, Italy)

Currently, a great variety of numerical methods for differential equations isavailable. In particular,
when dealing with the numerical solution of stiff problems, there are a lot of stable - high order
methods. As a consequence, the definition of new methods is relevant only if they do possesgood
features for their actual implementation. In such a category, for example, fall many families of
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Runge-Kutta methods and, more recently, Block BVMs. A more recent instance, isobtained by
considering a suitable ”blend” of (possibly different) block methods [1,2], for which a natural
nonlinear splitting is defined. In the talk, some of the most recent results concerning this approach
are presented, which seems to be promising, even for the construction of parallel solvers.

References

[1] L.Brugnano. Blended Block BVMs: A Family of Economical Implicit Methods for ODEs,
JCAM 116 (2000) 41-62.

[2] L.Brugnano, D.Trigiante. Block Implicit Methods for ODEs, in ”Recent Trends in Numeri-
cal Analysis”, L.Brugnano and D.Trigiante Eds., Nova Science, 2000, (to appear).

Parallel PC iteration of pseudo RKN methods for nonstiff initial-value problems
Nguyen Cong& Nguyen Thi Hong Minh
(Faculty of Mathematics, Mechanics and Informatics, Hanoi University of Science, 334Nguyen
Trai, Thanh Xuan, Hanoi, Vietnam, Vietnam)

This talk discusses parallel iteration schemes for pseudo RKN for solving special second-order
nonstiff initial-value problems. By using pseudo RKN methods as correctors, the resulting parallel
PC Methods can be well provided with high-order predictors without additional costs, and require
for a given order of accuracy, less computational efforts, less number of processors when compared
with the parallel PC iteration process applied to classical Gauss-Legendre RKN correctors.

Parallel Extended BDF Methods
Jason Frank & P.J. van der Houwen
(CWI, The Netherlands)

The extended backward differentiation formulas (EBDFs) for solving ordinary differential equa-
tions were introduced in the 1980s by J. Cash. These methods are stiffly accurate; and L-stable
methods are known to exist up to order 6. Furthermore, recent experience with the ‘Testset for
Initial Value Problems’ shows a variable stepsize variable order method based on the EBDFs to be
quite efficient compared to other popular methods from the literature. We have studied a number of
possible modifications to these methods which make them suitable for implementation on shared
memory parallel computers.
As originally formulated, the EBDFs area general linear methods(GLMs) havinga lower triangular
coefficient matrixA. In the serial case, a desirable property ofA is a constant diagonal entry, since
this allows reuse of the iteration matrix in all stages. From the parallel point of view, the defective
spectrum ofA precludes diagonalization, the standard approach to parallelizing GLMs. In our
investigations we consider two alternatives: (1) iterating with an approximation toA which is
diagonalizable, and (2) reformulation of the EBDF methods on a staggered grid such thatA does
have a complete spectrum.
Tests with these methods using a fixed stepsize code indicate that a reasonablespeedup can be
obtained in parallel on 3-4 processors.
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Generalized Backward Differentiation Formulae for parallel implementation
Francesca Mazzia& Felice Iavernaro
(Dipartimento di Matematica, Universitá di Bari, Italy)

Generalized Backward Differentiation Formulae (GBDFs) are a class of Boundary Value Methods
that numerically solve them dimensional Initial Value Problems� y0(t) = f(t; y); t 2 [t0; t0 + T ];y(t0) = y0:
by means of the following nonlinear system(Ai 
 Im)Y (n�1) + (Af 
 Im)Y (n) � h(IN 
 Im)F (Y (n)) = 0;
whereAi andAf are square matrices of dimensionN , Is; s = N;m; is the identity matrix of sizes,h is the stepsize of integration,Y (n) = (y(n)1 ; : : : ; y(n)N )T andY (n�1) contain the approximations to
the true solution computed at stepn andn�1 respectively,F (Y (n)) = (f(t(n)1 ; y(n)1 ); : : : ; f(tN ; yN))T
andb(n) depends on the solution computed at stepn� 1.
By definition GBDFs are L-stable methods; giving to the matricesAi andAf a suitable structure
(e.g. block-diagonal), we obtain A-stable (A�-stable) methods that achieve an high degree of
parallelism. In finite precision arithmetic, the ill-conditioning of a matrix related to the method
may destroy its convergence properties, giving rise to loss of accuracy due toa saturation threshold;
this question is also faced.

References

[1] L. Brugnano, D. Trigiante,Solving Differential Problems by Multistep Initial and Boundary
Value Methods, Gordon & Breach, Amsterdam, 1998.

[2] F. Iavernaro, F. Mazzia,On the extension of the code GAM for parallel computing,in
EURO-PAR’99, Parallel Processing, 1136–1143, Lecture Notes in Computer Science, 1685,
Springer, Berlin, 1999.

Experiments with parallel methods for ODEs
Dana Petcu
(Western University of Timisoara, Romania)

We study from a practical point of view the issue of applying parallelism across method in solving
initial value problems for ordinary differential equations. Three computational environments are
considered: a parallel computer with distributed memory, a cluster and a workstation network.
Two different numerical ODE solving tools are used: EpODE (ExPert system for ODEs, available
at http://www.info.uvt.ro/˜ petcu) and D-NODE (ODE solver based on a distributed version of
Maple) both allowing parallel and distributed computations. We benchmark several known parallel
methods, with accent on Runge-Kutta type methods. Test ODE systems are derivedfrom real
problems (like semi-discretized convection-diffusion problems). The goal ofour test is twofold: to

29



investigate to what extent the theoretical parallelization can be achieved in practice, and to compare
the code performances on parallel computers relative to those on distributed environments.

Numerical Experiments with parallel Two-step W-methods
Helmut Podhaisky& Bernhard A. Schmitt & Rüdiger Weiner
(Martin-Luther-Universiẗat Halle-Wittenberg, Germany)

We present numerical experiments on a shared memory machine for the recently introduced class
of parallel two-step W-methods. These methods are especially designed for large stiff ODE sys-
tems. For small test problems where the linear equations in the stages can be solved by LU decom-
position we compare our methods with the parallel method PSIDE.
For the solution of large semidiscretized parabolic test problems we discuss ourmethods with
Krylov approximation and compare our code with the sequential Krylov-code VODPK.

On the stability of two-step-W-methods
Bernhard A. Schmitt & Rüdiger Weiner & Helmut Podhaisky
(Universiẗat Marburg, Germany)

Two-step-W-methods for stiff initial value problems possesss linearly-implicit external stages
which may processed in parallel. The stability analysis of these methods hasto deal with the
difficulty that additional recursions for the stages are used besides the one for the approximate
solution, similar to general linear methods. Hence, the stability function of these methods is a
matrix function even for scalar problems. In this talk we discussA-stability in a strong sense by
constructingG-norms in which the stability matrix of certain methods is bounded by one in the
left complex halfplane for scalar problems. By the von-Neumann theorem this bound carries over
to norm estimates for linear dissipative systems of ODEs. With respectto the notion ofL-stability,
on the other hand, it is preferable to apply certain restrictions to the solutioncomponent of the
recursion only.
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6 Abstracts of Contributed Talks

The Pascal matrix and its relations with numerical methods for ODEs
Lidia Aceto
(Universit́a di Firenze, Italy)

The Pascal matrix has been known since ancient times, and it was mentioned in Chinese math-
ematical texts dating from 1303. Nevertheless only recently it has been carefully studied ([2],
[4], [5], and [6]). Such matrix arises in probability, numerical analysis, surface reconstruction,
and combinatorics; we came across it while studying stability properties of numerical methods for
solving ordinary differential equations[1]. In this talk we present some of the nice properties of
the Pascal matrix and show how it is related to other matrices associated with great names such as
Vandermonde, Stirling, etc.. Moreover, we shall consider the existing relations between this matrix
and the following classes of methods: Generalized BDF (GBDF), GAMs and ETRs[3].

REFERENCES[1] L. Aceto, D.Trigiante. On theA-stable methods in the GBDF class, (submitted).[2] R. Brawer, M. Pirovino. The Linear Algebra of the Pascal Matrix, Linear Algebra Appl.174 (1992)
13-23.[3] L. Brugnano, D.Trigiante.Solving Differential Problems by Multistep Initial and Boundary Value Meth-
ods, Gordon & Breach Science Publishers, Amsterdam, 1998.[4] G.S. Call, D.J. Velleman. Pascal’s Matrices,Amer. Math. Monthly100(1993) 372-376.[5] Z. Zhang. The Linear Algebra of the Generalized Pascal Matrix, Linear Algebra Appl.250(1997) 51-60.[6] Z. Zhang, M. Liu. An Extension of the Generalized Pascal Matrix and its Algebraic Properties,Linear
Algebra Appl.271(1998) 169-177.

A linearly implicit one-step time integration scheme for second order nonlinear hyperbolic
equations
Mansour A. Al-Zanaidi & M. M. Chawla
(Department of Mathematics and Computer Science, Kuwait University, Kuwait)

We present a linearizedlinearly implicit version of the well-known (functionally implicit) New-
mark method for initial-value problems for second order ODEs; the linearizedmethod has the
same local truncation error and stability properties as the Newmark method.We then employ the
linearized method to obtain a linearly implicit one-step time integration scheme for second order
nonlinear hyperbolic equations:utt = c2uxx + p(x; t; u); the resulting scheme is unconditionally
stable and it obviates the need to solve nonlinear systems at each time stepof integration. We
demonstrate the computational performance of the linearly implicit scheme for nonlinear ODEs
and for nonlinear hyperbolic equations, including the sine-Gordon equation.
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Unitary Coordinate Partitioning for General DAE Integrators
Carmen Arevalo & Steven Campbell
(Universidad Simon Bolivar, Venezuela)

Many physical problems are most easily initially modeled as a nonlinear implicit system of differ-
ential and algebraic equations (DAEs),f(x0; x; t) = 0
with fx0 = @f=@x0 identically singular. Many of the problems in constrained mechanics are ini-
tially formulated as index two and three DAEs. However, DAEs of index up to six naturally occur
in mechanics if actuator dynamics, joint flexibility, and other effects are included.
Numerical methods for DAEs based directly on classical approaches require that the systems have
special structure, such as being a mechanical system with holonomic constraints or have indices of
only one or two. There is a need for more general higher index DAE integrators. Three somewhat
related constraint preserving approaches have been proposed for general higher index DAEs. Here
we examine the Implicit Coordinate Partitioning (ICP) approach. In particular, we examine how
to chose a good local coordinate system. In Unitary Coordinate Partitioning (UCP)this is done by
orthogonal transformations as opposed to permutations.
We see this approach as being especially useful in the early stages of design and simulation when
various computer generated models are being used to investigate system behavior. It will also
be useful as a truth model for investigating other integration methods and the validity of various
simplified models.

Newton-Type Method for Solving Non-regular Equations
Vadim Azhmyakov
(EMA University of Greifswald, Institute of Mathematics and Computer Sciences, Germany)

Newton methods are widly used for receiving the approximate solutions for differential and dif-
ferential-algebraic equations in Hilbert space. We consider nonlinear operatorequations with ex-
panding left-hand side. For such systems the problem of searching the zero solution is examined.
We assume in addition that the Frechet derivative of operator is singular. The existence of solution
for operator equations with expanding operators is proved.
A new quadratically convergent method is introduced for differential equations inHilbert space
with nonregular, expanding right-hand side. The obtained Newton-type method is the theoreti-
cal basis for effective numerical procedures for solving the differential anddifferential-algebraic
equations.

Transfer equations and linear boundary value problems for DAEs
Katalin Balla
(Computer and Automation Research Institute, Hungarian Academy of Sciences, Hungary)

As it was proven recently by R. März and the author, an index equal to 1 or 2 maybe assigned to
the implicit differential equation of the formA(Cx)0 +Dx = f; (�)
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provided the matrix functionsA;B : I ! L(Rn) are well-matched onI and together withD : I ! L(Rn) have sufficient (low) smoothness. It was shown that a homogeneous equation
(*) (f = 0) and its properly defined adjoint equation are solvable simultaneously [1]. These
results allow considering the transfer of boundary conditions with some invariant. Properties of
the transfer equation and its use in BVP will be discussed.
[1] K. Balla, R. März: An approach to linear differential algebraic equations and their adjoint
equations in a unified way.Manuscript

Numerical verification of delay dependent error estimates for WRM for differential-functional
equations
Zbigniew Bartoszewski
(The Faculty of Applied Physics and Mathematics, The Technical University of Gdansk, Poland)

In the paper there is given a numerical illustration of the theoretical results presented by M.
Kwapisz in his talk given at this conference. The theoretical results havebeen tested on a num-
ber of examples and it was observed a good agreement between the theoretical error estimates
and numerically obtained results despite the fact that numerical realization of waveform relaxation
methods introduces discretization errors.

A Partial Differential-Algebraic Equations Approach for Elastic Rods
Brahim Benhammouda
(United Arab Emirates University, UAE)

The equations of motion of inextensible elastic rods form a system of partial differential-algebraic
equations (PDAEs) of index three. Elastic rods are used to model many practical problems such
as solitons or DNA loops. A semidiscretization of these equations yields a systemof differential-
algebraic equations (DAEs) of index� 3. Such DAEs are known to cause serious difficulties for
numerical integration methods.
In this paper, we describe a new index reduction technique to lower the index from three to one
while preserving all constraints. The resulting index-1 PDAE system is discretized in space by
Galerkin method to lead to an index-1 DAE system for the coefficients of the Galerkin solution.
This system can be integrated in time efficiently by DASSL.

Stability in the numerical solution of the heat equation with nonlocal boundary conditions
Natalia Borovykh
(Mathematical Institute, Leiden University, The Netherlands)

In this talk we deal with numerical methods for the solution of the heat equation with integral
boundary conditions. Finite differences are used for the discretization in space. The matrices
specifying the resulting semi–discrete problem are proved to satisfy a sectorial resolvent condition,
uniformly with respect to the discretization parameter.
Using this resolvent condition, unconditional stability is proved for the fully discrete numerical
process generated by applyingA(�) –stable one–step methods to the semi–discrete problem. This
stability result is established in the maximum norm; it improves some previous results in the liter-
ature in that it is not subject to various unnatural restrictions which were imposed on the boundary
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conditions and on the one–step methods.

Avoiding the order reduction of Runge-Kutta methods for linear initi al boundary value prob-
lems
Mari Paz Calvo & Cesar Palencia
(Universidad de Valladolid, Spain)

A new strategy to avoid the order reduction of Runge-Kutta methods when integrating linear, au-
tonomous, non-homogeneous initial boundary value problems is presented. The solution is de-
composed into two parts. One of them can be computed directly in terms of the dataand the other
satisfies an initial value problem without any order reduction. This idea appliesto practical prob-
lems, where spatial discretization is also required, leading to the fullorder both in space and time.
Numerical illustrations are given.

Low-order SDIRKS for DAEs
Frank Cameron & Mikko Palmroth & Robert Piché
(Pori School of Technology and Economics, Finland)

Our purpose is to design and test low-order integrators for the class of implicitindex 1 initial value
DAE problems typically represented byF (y0; y; t) = 0 ; y(t0) = y0 ; y0(t0) = y00
wherey : R ! RN andF : RN � RN ! RN [2]. We study SDIRKs because their ease of
implementation makes them attractive for use in software for simulating engineering processes,
for which low-order methods often suffice. Our design goal is an embedded SDIRK pair with
local orders 4(3) together with an interpolator and a predictor for providing starting values to the
iterative method used to solve the nonlinear stage equations. We introduce some properties akin to
stage-order that can be used with SDIRKs to reduce the number of order conditions thatneed to
be explicitly handled. In addition to order conditions, our SDIRK design also takes into account
stability, truncation error coefficients and some measures of error estimate quality. We present
several new SDIRKs. Numerical tests are presented comparing different predictors and comparing
our SDIRKs with the Radau IIA method from Hairer and Wanner [1, pg. 74,123].

References

[1] Hairer, E. and Wanner G.Solving ordinary differential equations, Vol II, Stiff and differential-
algebraic problems, Springer-Verlag, Berlin, 1996.

[2] Kvaernø, A. Runge-Kutta methods applied to fully implicit differential-algebraic equations
of index 1.Math. Comput., 54, 583-625, 1990.
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A posteriori error estimation for evolutionary dissipative equations
Javier de Frutos& Julia Novo
(University of Valladolid, Spain)

In [2] we introduce a postprocess of the spectral element method for time-dependent dissipative
two dimensional equations.
In this talk we will show that the postprocessed method can be used as an a posteriori error estima-
tor for evolutionary dissipative equations [1]. More precisely, we will show that the error achieved
using the spectral element method can be accurately estimated by calculating theL2 orH1 norm of
the difference between the spectral element approximation and the postprocessed approximation
that can be obtained f rom it. The postprocessed method, used as an a posteriori error estimator, re-
veals itself not only cheap and easily computable, but also able to give localand global information
on the error of the numerical solution.

[1] M. Ainsworth & B. Senior,Aspects of an adaptiveh-p finite element method: Adaptive strategy,
conforming approximation and efficient solvers, Comput. Methods Appl. Mech. Engrg., 150
(1997), 65-87.
[2] J. de Frutos & J. Novo,A postprocess based improvement of the spectral element method, Appl.
Numer. Math., 33 (2000), 217-223.

Numerical behaviour of stable and unstable solitary waves
Angel Duran & Miguel A. Lopez Marcos
(University of Valladolid, Spain)

Classical analysis of numerical methods for integrating time-dependent differential equations is
based on the search of small approximations errors. However, a numerical scheme can have many
other important properties. In particular, conservation properties would be pointed out. Almost ev-
ery problem possesses physical quantities such as mass, energy, etc that remain constant during the
evolution of the system. It is not always true that these quantities keep invariant through numer-
ical integration. Then, we can distinguish between conservative and nonconservative numerical
methods.
On the other hand, conservative integrators reveal successful for the numerical integration of cer-
tain class of solutions. In this talk we study this situation in the case of solitary wave problems for
the gRLW equation. This equation has a remarkable property: the stability of the shape ofsolitary
wave solutions depends on their velocity. We pretend to describe the different behaviour of the
numerical approximations by using conservative and nonconservative methods, depending onthe
velocity of the wave.

Integration of Index-One Differential-Algebraic Equations using Dichotomically Stable One-
Step Formulae
Roland England & René Lamour
(The Open University, UK)

The first author has previously established the need for dichotomic stability when solving stiff
boundary-value problems (BVPs) in ordinary differential equations (ODEs), withpotentially sharp
boundary layers at each end of the interval. He has implemented a dichotomicallystable implicit
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Runge-Kutta method, of order 4, in a variable step-size initial-value integrator (SYMIRK). The
3-stage Lobatto IIIA method may be written as a single formula:Xi+1 �Xi � h �16X0i+1 + 23F� 12(Xi+1 +Xi)� 18h(X0i+1 �X0i)	+ 16X0i� = 0;
where the system of ODEs is written asx0 = F(x) 2 IRn. An explicit, 4-step, third-order,
extrapolation formula is used, both as a predictor, and to provide a local error indicator. This has
the correct asymptotic behaviour, both for small and for large step sizes.
For differential-algebraic equations (DAEs) of the formF(x0;x; t) = 0 2 IRn, the Lobatto IIIA
formulae must be solved simultaneously for the derivativesX0i+ 12 , X0i+1. The Newton iteration

matrix is then non-singular for an index-one system. Predictors are also needed for the derivatives,
and at the off-step points.
The ODE integrator (SYMIRK) has been adapted in this way, for the solution of index-one DAEs,
and the resulting integrator (SYMDAE) has been inserted into the multiple-shooting code (MSH-
DAE) developed by R. Lamour for differential-algebraic BVPs. Tests on a few stiff boundary-value
problems have shown that, at least in some cases where the standard BDF integrator in MSHDAE
fails to integrate across the interval of interest, the dichotomically stable integrator SYMDAE en-
counters no difficulty. What is more, the modified version of MSHDAE produces an accurate
solution in such cases, and within limits imposed by computer word length, the efficiency of the
solution process improves with increasing stiffness. For some non-stiff problems, the solution is
also entirely satisfactory.

A Two-level Finite Element Method for the streamfunction form of the Navier-Stokes Equa-
tions
Faisal A. Fairag
(King Fahd University of Petroleum & Minerals (KFUPM), Saudi Arabia)

to be submitted

Sharpening the stability bound in the maximum-norm of the Crank-Nicolson scheme for
one-dimensional heat equation
István Faragó & C. Palencia
(Eötvös Lorand University, Budapest, Hungary)

The maximum norm stability constantCs of the numerical solution of the one-dimensional heat
equation, via the Crank-Nicolson method, is considered. It is known that the method is contractive,
i.e. thatCs = 1, only for� 2 (0; 1:5], where� = �h2 . Moreover, it is also known thatCs � 23 for
any value of� > 0. In this talk, using the Laurent expansion and the theory of sectorial operators,
we sharpen the existing estimates to3 � Cs � 5, for � � 1:5.

New methods for oscillatory problems based on classical codes
Amelia Garcia & Pablo Martin
(University of Valladolid, Spain)

The numerical integration of differential equations with oscillatory solutionsis a very common
problem in many fields of the Applied Sciences. Some methods have been special devised for this
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kind of problems, such as those of Bettis [1], Gautschi [2], Gonzalezet al. [3], Martmnet al [4],
van der Houwen and Sommeijer [5] ... In most of them the calculation of the coefficients needs
more computational effort than the classical codes because the mentioned coefficients depend on
the frequency of the problem in a not simple manner. On the contrary, in this work we present new
algorithms specially designed for oscillatory problems whose coefficients havea simple frequency
dependence. The methods obtained are competitive when comparing with classicaland special
codes.

References

[1] Bettis, D.G.: Numerical integration of products of Fourier and ordinary polynomials.Numer.
Math.14, 421–434 (1970).

[2] Gautschi, W.: Numerical integration of ordinary differential equations based on trigonometric
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[4] Martmn, P. and Ferrandiz, J.M.: Multistep numerical methods based on the ScheifeleG-
functions with application to satellite dynamics.SIAM J. Numer. Anal.. 34, 359–375 (1997).
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Acquiring a solution of the time-dependent Schr̈odinger equation using CP methods
Andy Georges& Marnix Van Daele
(University of Ghent, Belgium)

The time-dependent Schrödinger equation (TDSE) can be solved as a partial differential equation
of the parabolic type, e.g. by using a Cranck-Nicholson scheme. Another approach can be as
follows. We take constant approximations to the potential in the time dimension. Then one can
use the Separation of Variables method in eacht time interval in order to solve the TDSE. The
solution	 in each such interval can be written as a linear combination of the solutions to the time-
independent Schrödinger equation: E multiplied with an appropriate exponential factor. These E can be efficiently calculated using CP methods. In the movement through time,we can calculate
the coefficients to the solutions E of the next time interval by imposing a matching condition at
the meshpoints in time.

References

[1] L. Gr. Ixaru, H. De Meyer and G. Vanden Berghe,CP methods for the Schrödinger equation
revisited, Journal of Comp. and Appl. Math., 1997
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Operator Splitting and Approximate Factorization for Taxis-Diffusion-Re action Models
Alf Gerisch & Jan G. Verwer
(Martin-Luther-Universiẗat Halle-Wittenberg, Germany)

We consider the numerical solution of 2D systems of certain types of taxis-diffusion-reaction equa-
tions from mathematical biology. By spatial discretization these PDE systems are approximated
by huge systems of positive, nonlinear ODEs (Method of Lines). We are especiallyinterested in
the numerical integration of these large ODE systems for low to moderate accuracy by means of
splitting techniques. An important consideration is maintenance of positivity. We apply operator
splitting and approximate matrix factorization using low order explicit Runge-Kutta methods and
linearly implicit Runge-Kutta-Rosenbrock methods. As a reference method the general purpose
solver VODPK is applied.

Exponential Integrators for Classical Molecular Dynamics
Volker Grimm
(Heinrich-Heine-Universiẗat Düsseldorf, Germany)

A problem in integrating molecular dynamic systems is the presence of high-frequencyoscilla-
tions, which restricts the integration step-size. In many cases an explicit separation of the forces
into fast forces and slow forces is available in such a way that the fastforces are nearly linear and
contain all of the high-frequency part of the solution. Exponential integrators are considered which
overcome the step-size barrier.

Two-sided enclosures for IVPs by means of bounding operators I: Construction of bounding
operators and convergence properties
Christian Grossmann& Zoltán Horváth
(TU Dresden, Germany)

Monotonicity properties of the originally given initial value problem are applied to derive dis-
cretization methods which generate guaranteed upper and lower bounds for the unknown solution.
The main idea of our discretizations is to replace the right hand side of the problem byupper and
lower bounds respectively using the concept of bounding operators similar to a technique originally
proposed for 2-point boundary value problems. The solution of the modified initial value problem
constitute upper and lower solutions respectively in case when the original problem is monotone.
Further, monotonicity assumptions may be relaxed by means of monotone splitting.
Finally a rather general class of bounding operators is introduced and two basic principles of con-
struction of bounding operators are studied . The first one is based on interpolation of theright
hand side while the second one rests on numerical methods of dense and smooth output, which
are considered as solution methods for the original initial value problem. The bounding operator
technique can be viewed as a correction process of this underlying method.
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On numerical contractivity for DAEs
Inmaculada Higueras
(Universidad Publica de Navarra, Spain)

In the theory of ODEs, different models have been introduced in order to study the numerical
stability of the methods. One of these models are the contractive problems and the interesting
methods in this context are the algebraically stable methods.

Given a DAE, similar questions can be made. In this talk we discuss about whatdo we mean by
contractivity in the context of DAEs and its numerical counterpart.

On the Monotonicity Conservation of the Numerical Solution of the One-Dimensional Heat
Equation
Róbert Horváth
(University of West Hungary, Institute of Mathematics, Hungary)

It is very important to choose such numerical methods in the applications which are not only con-
vergent, but they conserve some characteristic properties of the described process. Some of these
properties are the nonnegativity conservation, concavity conservation, sign-stability and others in
the case of the heat conduction.
In this lecture we introduce the notions of the totally monotone and monotonicity conserving one-
step vector iterations. We analyse their conditions. The results are appliedin the qualitative inves-
tigation of numerical solutions of the one-dimensional heat equation. We give the necessary and
sufficient conditions of the monotonicity conservation.

Two-sided enclosures for IVPs by means of bounding operators II: Application to PDEs
Zolt án Horváth & Christian Grossmann
(Sźechenyi Istv́an College Gÿor, Hungary)

Here the basic principle of bounding operator discretizations discussed in the preceding talk (Gross-
mann, Horváth: Two-sided enclosures for IVPs by means of bounding operators I: Construction
of bounding operators and convergence properties) will be studied more in detail for two specific
classes of problems. These problems arise in semidiscretization of initial-boundary value problems
for partial differential equations of parabolic type and of first order hyperbolic type, respectively.
First, we investigate the relevant characteristics of the obtained methods for these problem sets and
discuss numerical results. Further, for selected applications of the methods under consideration we
derive guaranteed a posteriori error estimates in case of underlying continuous ODE solvers.

Five-pointed difference schemes for the equations of parabolic type
Hrant Hovhannissian
(The Engineering State University of Armenia, Armenia)

The fourth-power parabolic type of equation, given in the orginal and the boundary conditions is
observed in the research.For the mentioned problem is studied the second and the fourth-power
accuracy indeterminate, five-pointed difference schemes, which for eachlayer (beginning from the
second) are linear algebraic system of equations with five-diagonal matrix.
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The obtained linear algebraic system of equations with five-diagonal matrixes is solved by the
Thomas’s algorithm, right, left and according to the methods of opposing displacement.For five-
pointed difference schemes are proved:� maximum of source� theorem of comparison� theorem of existence and uniqueness� majorants.

Block Boundary Value Methods used as General Linear Methods
Felice Iavernaro& Francesca Mazzia
(Dipartimento di Matematica, Universitá di Bari, Italy)

The numerical solution of the initial value problem� y0(t) = f(t; y); t 2 [t0; t0 + T ];y(t0) = y0;
by means of a block-Boundary Value Method (block-BVM), generates, at stepn of the integration
procedure, the following nonlinear system of equations:8>>>>>>>>>><>>>>>>>>>>:

kXj=0 �(i)j y(n)j = h kXj=0 �(i)j f (n)j ; i = 1; : : : ; k1 � 1; initial methods,k�k1Xj=�k1 �j+k1y(n)n+j = h k�k1Xj=�k1 �(i)j+k1f (n)n+j; n = �; : : : ; N � k + �; main method,kXj=0 �(i)k�jy(n)N�j = h kXj=0 �(i)k�jf (n)N�j; i = N � k + k1 + 1; : : : ; N; final methods,

wherek1 � k is the number of initial methods andh is the stepsize of integration. The integerN
defines the dimension of the discrete problem as well as the time interval overwhich the approxi-
mation is computed, namely[t(n)0 ; t(n)f ], with t(n)f = t(n)0 + Nh. In details,y(n)i ; i = 0; : : : ; N; are

approximations to the true solution at the timet(n)i while f (n)i = f(t(n)i ; y(n)i ). The initial and final
methods are necessary to approximate the boundary conditions needed by the main methods, that
is y(n)0 ; : : : ; y(n)k1�1; y(n)N�k+k1+1; : : : ; y(n)N :
An alternative approach is to neglect the initial methods and use information from the previous
computed solution to approximate the left boundary condition. This reduces the dimension of the
system toN � k1, and change the stability and convergence properties of the overall block-BVM.
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On the contractivity of implicit-explicit linear multistep method s
Karel in ’t Hout
(Leiden University, Mathematical Institute, The Netherlands)

This talk is concerned with the class of implicit-explicit (IMEX) linear multistep methods for the
numerical solution of initial value problems for systems of ordinary differential equations. These
numerical methods have been considered by various authors in the literature, especially in the
recent years. In this talk, we are interested in the stability properties of IMEX linear multistep
methods. We will analyze their stability by considering certain linear autonomous systems of
ordinary differential equations. First we present a theorem on contractivity,which can be regarded
as a matrix-valued version of a theorem of von Neumann for several variables. Next, we determine
the so-called contractivity regions of some popular IMEX linear multistep methods. Finally, we
give a result based on the stability regions of IMEX linear multistep methods,yielding strong
stability.

Modular Implementation of Navier-Stokes Equation Solver on Arbitrary/Hyb rid Unstruc-
tured Meshes
Makky Jaya & Claus-Dieter Munz
(Institute for Aerodynamics and Gasdynamics, University of Stuttgart, Germany)

We describe the modular implementation of Navier-Stokes equation code using the Finite-Volume
discretization scheme in Fortran 90. By the current implementation, object-oriented models of
mesh, primitive and conservative variables and related objects concerning on Riemann problem
and higher order computation are modularly contsructed and employed. Due to the high flexibility
and independency of each module (object), the end solver of Navier-Stokes equation isachieved
by unifying all modules in the main driver code. By this way, the overall structure of the new
implementation may be implicitly viewed as a kind of black-box. Despite of being able to design
a black-box solver for Navier-Stokes equation, the achieved code embodies rather agroup of dy-
namic modular libraries which can be used in any part of the main driver code. Detailed analysis of
the performance and strategy of the current modular implementation, and the resultof numerical
tests from simple to highly complex geometries are presented.
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A second-order differential-finite-differences model
Alex Kolpakov
(Siberean State Universiti T&I, Russia)

The paper is devoted to numerical analysis of a differential-finite-differences model describing, in
particular, a filamentary composite [1]. The numerical analysis is based on fundamental solutions
of the system.
The model under consideration has the formd2wi=dt2 +D+(Gi(t)D�wi) = 0
whereD+fi = fi+1fi; D�fi = fi�1fi are the operators of finite differences.dwi=dt(tk) = 0 if the i-th fiber in broken at the pointtk.Gi(t) = 0; t 2 [t1; t2] if the matrix between the (i+1)-th and the i-th filaments is broken at the
interval[t1; t2].
Combining the broken fibers and matrix layers, we can obtain a hole.
The fundamental solutions
The problem above has two types of the fundamental solutions:
- corresponding to an expansion center (or broken fiber);
- corresponding to a pair of forces applied to adjacent fibers.
The first solution was obtained in [2]. The second solution is found by the author. Both the
solutions can be written in explicit forms (as series).
Transformation of the initial problem Using the fundamental solutions we can transform the
initial problem to a system of integral-algebraic equations, which involves point where the fibers
or/and the matrix are broken. This system is less in dimension then the initial problem.
Numerical analysis
The integral-algebraic system was solved numerically. Some interestingfrom the mechanics point
of view models were analyzed. There were among them the problems about concentration of
stresses near a broken matrix and near a hole.
References
1. Hedgepeth J. M. and Van Dyke P. (1967) Local stress concentration in imperfect filamentary
composite material. J Composite Materials. 3(1).
2. Mikhailov A.M. (1973) On failure of unidirectional fiberplastics. Izvestiy AN SSSR. Mekh.
Tverdogo Tela. 5. (in Russian, translated as Mechanics of Solids)

On delay dependent error estimates for waveform relaxation methods for differential-functional
equations
Marian Kwapisz
(Institute of Mathematics, The Pedagogical University of Bydgoszcz, Poland)

In the paper we deal with the iterative processesx0k+1(t) = F (t; xk+1(t); xk(t); xk(�)); k = 0; 1; : : : ; t 2 J = [0; T ];xk+1(t) = g(t); t 2 J0 = [�h; 0]; h > 0; x0 - given;
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for solving the initial value problemsx0(t) = f(t; x(t); x(�)); t 2 Jx(t) = g(t); t 2 J0;
whereg 2 C(J0; Rn), f 2 C(J � Rn � Cg(JT ; Rn); Rn), JT = [�h; T ], andCg(JT ; Rn) denotes
the space of continuous functions defined onJT and being equal tog onJ0.
For the splitting functionF , f(t; x; y(�)) = F (t; x; x; y(�)), we assume the one-sided Lipschitz
condition (F (t; x; y; z)� F (t; �x; y; z); x� �x) � m(t)kx� �xk2
and the Lipschitz conditions with respect to the last two argumentskF (t; x; y; z)� F (t; x; �y; �z)k � K(t)ky � �yk+ L(t)kz � �zk�(t)
It is assumed that� is continuous, nondecreasing, and satisfies0 � �(t) � t andkyk = max�h�s�t ky(s)k
for t 2 J . Letuk(t) = max0�s�t kx�(s)�xk(s)k, wherex� is the exact solution of the initial value
problem under consideration. Under suitable conditions on the given functionsm, K, L, u0, we
will present delay dependent estimates for the errorsuk(t).
The Computation of Consistent Initial Values for Nonlinear Index-2 Differential-Algebraic
Equations
René Lamour & Diana Estevez Schwarz
(Humboldt-University of Berlin, Germany)

The computation of consistent initial values for differential–algebraic equations (DAEs) is essential
for starting a numerical integration. Based on the tractability index concepta method is proposed
to filter those equations of a system of index–2 DAEs, whose differentiation leads to an index
reduction. The considered equation class covers Hessenberg-systems and the equations arising
from the simulation of electrical networks by means of Modified Nodal Analysis (MNA). The
index reduction provides a method for the computation of the consistent initial values. The realized
algorithm is described and illustrated by examples.

A variable-stepsize variable-order multistep method for the integration of perturbed linear
problems
David J. Lopez& Pablo Martin & Amelia Garcia
(University of Valladolid, Spain)

In 1971 Scheifele [3] wrote the solution of a second order equation as an expansion in terms of
theG-functions. This set of functions extend the classical monomials in the Taylor series of the
solution, and it show interesting properties when integrating perturbed problems.Recently, Martı́n
and Ferrándiz [2] constructed the SMF code, based on the ScheifeleG-functions for oscillatory
problems, which was generalized by López and Martı́n [1] to the linear multistep LM method.
However, the remarked codes are constant steplength methods, and efficient integrators must be
able to change the steplength. In our work we extend the ideas of Krogh for the Adams methods
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to the LM algorithm, removing theG-functions, with a special attention in the computacional cost
of the coefficients of the method. We show the advantages of the new code in perturbed problems,
and its interesting behavior in modePEC.
[1] D.J. López, P. Martı́n, A numerical method for the integration of perturbed linear problems,
Appl. Math. Comput.96 (1998) 65–73.
[2] P. Martı́n, J.M. Ferrándiz, Multistep numerical methods based on the ScheifeleG-functions
with application to satellite dynamics, SIAM J. Numer. Anal.34 (1997) 359–375.
[3] G. Scheifele, On numerical integration of perturbed linear oscillatingsystems, ZAMP22(1971)
186–210.

Postprocessing the linear finite element method
Julia Novo & Javier de Frutos
(University of Valladolid, Spain)

In [1] a postprocessing technique, developed earlier for spectral methods [2], isextended to the
finite-element methods for dissipative partial differential equations. In that paper the authors claim
that the postprocessing technique does not improve the order of convergence of the finite-element
method when using piecewise-linear polynomials. Obviously, this a drawback thatlimits seriously
the range of applicability of the method. However, the new method has been proven tohave
a superior rate of convergence than the standard finite-element method when otherthan linear
elements are used (say, quadratic, cubic ... )
In this talk we present a modification of the analysis technique that allows us toprove an optimal
rate of convergence, in theH1 norm, of postprocessed linear finite element methods. A superior
rate of convergence over standard methods is then obtained also in the case of linear finite element
methods.

[1] B. Garcı́a-Archilla & E. Titi,Postprocessing the Galerkin method: The Finite Element Case,
SIAM J. Numer. Anal.37, 2, 470–499.
[2] J. de Frutos & J. Novo,A spectral element method for the Navier-Stokes equations with im-
proved accuracy, SIAM J. Numer. Anal., to appear.

Quantum motion numerical calculation for axial channeling
Sergey Nurmagambetov
(Karaganda State University, Kazakhstan)

Wave function that describe the quatum motion of channeling particles in solids usually are de-
termined by numerical methods applying in solid state physics like APW, OPW andso on. But
because of two-dimensional case it can be used more direct solving numerical methods. Based
on one-dimensional numerical analysis of plane channeling that is used the symmetricform of
linearly independed solutions we are applied this method for two-dimensional case.First, various
linearly independed solution of given symmetry are determined at edges of elementary cell. Then
using random walking Monte-Carlo calculations the wave function is determined for inner space
of elementary cell. In paper we discuss various types of wave functions and energysufface for
diamond like structure crystals.
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Stability of W-methods with applications to operator splitting
Alexander Ostermann
(Universit́e de Geńeve, Switzerland)

We analyze the stability properties of linearly implicit Runge-Kutta discretizations of the parabolic
initial value problemu0 + Au = Bu. We work in an abstract Banach space setting, assuming thatA is the generator of an analytic semigroup and thatB is relatively bounded with respect toA.
The numerical method treatsA implicitly, whereas the right-hand side involvingB is discretized
in an explicit way. Therefore the method can be seen as a splitting method. Asan application
of our stability results, the convergence of such splitting methods is shown. Moreover, the layout
of a geometric theory for discretizations of semilinear parabolic problemsu0 + Au = f(u) by
W-methods is presented.

Coupled High Order Boundaries in Numerical Solution of Hyperbolic Equations
Manouchehr Parsaei
(Tehran University, Iran)

When approximating hyperbolic conservation laws numerically any groups of S-equations(result-
ing from the difference equations ) can be assumed to define a coupling between S independent
waves. This coupling determines the inter-relationship between the amplitudeof the solution waves
at S consecutive nodes. This relationship is presented in the form of S eigen-pairs or in a way S
component waves each having a distinct phase and group velocity. At the out flow boundariesthe
boundary conditions participate in defining these inter-relationships and new sets of eigen-pairs
are produced. When the first group of solution waves approaches the boundaries each of the above
wave components is decomposed in to the second set of waves (e-vectors) and depending on the
sign of the group velocity of those waves parts of them move on and pass through the bound-
aries and the other parts are reflected back in to the system. The later waves are now converted
back to the first form, this results in a deformation in the shape of the reflected waves together
with a change in their speeds. In this talk we present this coupled method of analyzing boundary
conditions and compare it with the time Fourier transformation method in which the order of the
difference equations are used to determine the behavior of the discretization atthe boundaries.
Some numerical results are presented to support the points made.

Numerical modeling forest fire spread initiation
Valeri A. Perminov
(Belovo Branch of Kemerovo State University, Russia)

In this paper the theoretical investigation of the problem of forest fire spreadin windy was car-
ried out. The research was made by means of the mathematical modeling methods ofphysical
processes. It was based on numerical solution of two dimensional Reynolds equations for the de-
scription of turbulent flow taking into account for diffusion equations chemical components and
equations of energy conservation for gaseous and condensed phases. In this context, a study-
mathematical modeling - of the conditions of forest fire spreading that would make it possible to
obtain a detailed picture of the change in the velocity, temperature and component concentration
fields with time. The paper suggested in the context of the general mathematicalmodel of for-
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est fires gives a new mathematical setting and method of numerical solution ofa problem of a
radioactive spread above the forest region.
Let us examine a plane problem of radiation-convection heat and mass exchange of forest fuels
in all forest strata with gaseous combustion products and radiation. The surface fire source is
modeled as a plane layer of burning forest fuels with known temperature as a function of time
and turned off after the forest fire initiation. It is assumed that the forestduring a forest fire
can be modeled as a two-temperature multiphase non-deformable porous reactive medium. Let
there be a so-called ”ventilated” forest massif, in which the volume of fractions of condensed
forest fuel phases, consisting of dry organic matter, water in liquid state,solid pyrolysis products,
and ash, can be neglected compared to the volume fraction of gas phase (components of air and
gaseous pyrolysis products). To describe the transfer of energy by radiation we use adiffusion
approximation, while to describe convective transfer controlled by the wind andgravity, we use
Reynolds equations.
Because of the horizontal sizes of forest massif more than height of forest - h, system of equations
of general mathematical model of forest fire was integrated between the limits from height of
the roughness level - 0 to h. The three dimensional problem formulated above is reduced to a
solution of the two dimensional system of equations. The thermodynamic, thermophysical and
structural characteristics correspond to the forest fuels in the canopy of apine forest. The solution
of the system of equations with initial and boundary conditions may result in defining the fields
of velocity, temperature, component concentrations and radiation density. To close the system,
the components of the tensor of turbulent stresses, and the turbulent heat and mass fluxes are
determined using the local-equilibrium model of turbulence.
The boundary-value problem was solved numerically using the method of splitting according to
physical processes. In the first stage, the hydrodynamic pattern of flow and distribution of scalar
functions was calculated. The system of ordinary differential equations of chemical kinetics ob-
tained as a result of splitting was then integrated. A discrete analog for system of equations was
obtained by means of the control volume method using the SIMPLE algorithm.
The accuracy of the program was checked by the method of inserted analytical solutions. Analyti-
cal expressions for the unknown functions were substituted in system of differential equations and
the closure of the equations were calculated. This was then treated as the source in each equation.
Next, with the aid of the algorithm described above, the values of the functions used were inferred
with an accuracy of not less than 1dimensions of the control volumes on the solution wasstudied
by diminishing them. The time interval was selected automatically.
Fields of temperature, velocity, component mass fractions, volume fractionsof phases and con-
centration components were obtained numerically. It allows to investigate dynamics of forest fire
spread under influence of various external conditions: a) meteorology conditions (air temperature,
wind velocity etc.), b) type (various kinds of forest combustible materials) and their state(load,
moisture etc.). A great deal of final and intermediate gaseous and dispersed combustion products
of forest fuels is known to be exhausted into the atmosphere during forest fires: carbon monoxide,
carbon dioxide, nitrogen oxide, water, soot, smoke, methane, other hydrocarbons and etc. The
knowledge of these kinds of ejection enables a full estimate of the damage from forest fires to be
made. The results obtained agree with the laws of physics and experimental data.
The research has been carried out due to the financial support of RFBR (Project code98-01-
03013).
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Approximations of coupled differential and difference equations by ordinary differential
equations
Larisa Piddubna & Igor Cherevko
(The State University of Chernivtsy, Ukraine)

There has been a great development of the theory of functional-differential equations(FDE) due
to the increasing number of applications of FDE in various fields of science and technology. Of
special interest are the coupled differential and difference equations. The approximation algorithm
of FDE by a sequence of ordinary differential equations (ODE) has been considered [1-3] in the
researches of control and stability problems in systems with delay. The aimof the present talk is
to obtain approximation results for new classes of time lag systems and use them for modeling in
electrodynamic. As straightforward application of the above result we shallconsider the particular
circuit described in [4] by means of system partial differential equations. These equations are re-
duced to a difference-differential equation of neutral type that may be written inform the coupled
differential and difference equations.

References
1. Banks H.T. Approximation of nonlinear functional differential equation control systems //
J.Optim. Theory Appl. 29 (1979), P.383-408.
2. Cherevko I.M., Piddubna L.A. On the approximate solutions of differential-diffence equation //
Mathematichni Studii. 9(1998), P.187-192.
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A method of characteristics for solving multirate partial differential equations in radio fre-
quency application
Roland Pulch
(Universiẗat Karlsruhe (TH), Germany )

A multirate behaviour with widely separated time scales arises often in circuit simulation. This is
especially given in radio frequency circuits, which are used in communication electronics. Their
behaviour in time makes the analysis of such circuits more difficult. By means ofa new approach,
which bases on a PDE model, these problems can be avoided.
In the talk, we introduce this model and discuss the arising system of PDEs. Furthermore, a
new numerical method to solve the system with periodic boundary conditions is presented. This
technique differs from other approaches by using the special structure of the underlying PDE.

Numerical Solution of a Nonlinear Model of Urea Hydrolysis Reactor
Mohammad R. Rahimpour & A. Azrapour
(Shiraz University, School of Engineering, Iran)

Numerical Solution of a Nonlinear Model of Urea Hydrolysis Reactor
Abstract
In this paper a mathematical model used for simulation of an urea hydrolysis reactor. This model is
able to obtain the temperature and concentration profiles along the reactor. The Newton-Raphson
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method used to solve the nonlinear algebraic equations to calculate the equilibriumand non-
equilibrium concentration amounts. Also the half-method used to satisfy the activity coefficients
of the reaction components. In this reactor a plug-flow model is considered and the partial dif-
ferential equations of the model was solved by the explicit numerical method. The mathematical
model results compared with the data of an industrial-scale plant. The numerical results were in a
good agreement with the data of the industrial-scale plant.
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On Implicit Euler for High-Order High-Index DAEs
Jürgen Sand
(Dept. of Computer Science, Univ. of Copenhagen, Denmark)

The Implicit Euler method is seldom used for solving differential-algebraic equations (DAEs) of
differential indexr � 3, since the method in general fails to converge in the firstr � 2 steps after
a change of stepsize and after the initial point.
However, if the differential equation is of orderd = r� 1 � 1, an alternative variable-step version
of the Euler method can be shown uniformly convergent. This variable-step method is equivalent
to the Implicit Euler except for the firstr � 2 steps after a change of stepsize and after the initial
point.
Generalization to DAEs with differential equations of orderd > r � 1 � 1, and to variable-order
Backward Differentiation Formulas is discussed.

Strategies for the Numerical Solution of the Navier-Stokes Equations
Joerg Sautter
(University of D̈usseldorf, Germany)

Expensive or dangerous experiments are being more and more frequently replaced by numerical
simulations. In addition, a simulation produces the possibility to analyze processes which can not
be tested in an experiment. Weather forecasts, for example, depend strongly onefficient numer-
ical simulations in fluid dynamics. I will show some general ideas for time integration and their
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limitations, capabilities and advantages. Then I will present a numericalcomparison of some time
stepping schemes and different approaches for the discretization and solution of the Navier-Stokes
equations for incompressible homogeneous fluids.

Implicit Taylor series methods and stiff semi-linear initial value problems
Hans-Eberhard Scholz
(Martin-Luther-Universiẗat Halle-Wittenberg, Germany)

In this talk we discuss results concerning the solvability of the algebraic equations, stability, and
convergence properties of the implicit Taylor series method applied to two classes of stiff semi-
linear systems of differential equations. All these results are independent of the stiffness of the
systems.

Qualitative Properties of Discretizations for Index 2 DAE’s
Johannes Schropp
(Universiẗat Konstanz, Germany)

We analyze numerical discretizations applied to index2 DAE’s and compare the asymptotic and
geometric features of the numerical and the exact solution. For a class of discrete schemes satis-
fying the first order constraint exactly it is shown that the geometric and asymptotic properties of
the DAE are reproduced correctly. The proof combines reduction techniques of discretized index2 DAE’s to ODE’s with some invariant manifold results of Nipp and Stoffer.

Numerical Approximation of Nonlinear BVPs by means of BVMs
Ivonne Sgura& Francesca Mazzia
(Department of Mathematics E. De Giorgi - University of Lecce, Italy)

Let us consider the following nonlinear Boundary Value Problem (BVP)y0 = f(t; y); t0 � t � T;g(y(t0); y(T )) = �
wheref; g : [t0; T ]� IRm ! IRm, y; � 2 IRm, f andg are differentiable functions.
The numerical solution of the nonlinear BVPs can be found using two different approaches. The
basic one is to use a numerical method to form a discrete algebraic system which can be solved
with a Newton iteration to obtain a discrete solution. The other approach consists in applying the
Newton method to the nonlinear differential equation. Each iteration requiresthe solution of a
linear BVP. In practice the solutions of the continuous linear subproblems can only be discrete
approximations. Therefore the theory of inexact Newton method must be used to determine how
accurately we must solve these subproblems to ensure the convergence to the solution of the con-
tinuous non linear problem. The two approaches are equivalent if the grid is not changed during
the iterative process.
In this paper we apply the quasi-linearization technique together with an improvement of the mesh
selection strategy presented in [1] and we use Boundary Value Methods to discretize the continuous
linear BVPs. Stopping criteria on the residual of each linear BVPs and on itsapproximate solution
are given to guarantee the local convergence to the nonlinear solution. Numericalexperiments on
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stiff problems show the behavior of this technique, giving rather satisfactory results compared with
well known solvers for BVPs.

References
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Adaptive Collocation and Least-Squares Method for Navier-Stokes Equations
Vasily P. Shapeev& Leonid G. Semin
(Institute of Theoretical and Applied Mechanics SB RAS, Russia)

In the present study the method of collocation together with least-squares (CLS) for solving
boundary-value problems for stationary Navier-Stokes equations in two dimensions isproposed.

The approximate solution is found as piecewise polynomial function:

� ~vp � =Pj ajm'j; where'j are the basic functions, m is cell number. The velocity components are thought as secondorder
polynomials, pressure - as linear function. Moreover, basic functions are takenin such manner that
the approximate solution satisfies continuity equation. Coefficientsajm will be determined from
collocation equations and matching or boundary conditions. Number of these equations is greater
than number of unknown coefficientsajm. Solution of this system of equations is thought in terms
of least-squares method [L.G. Semin, V.P. Shapeev. Computational Technologies, 1998,Vol.3,
No. 3, p. 72-84]. The order of convergence not worse than second was observed in numerical
experiments in problems with smooth solutions at moderate Reynolds numbers. Algorithmof grid
adaptation to solution singularities is implemented. Grid is adapted on the base of a-posteriory er-
ror estimation. As numerical experiments have shown, grid refines first of allin those subdomains
where solution of initial differential problem has large gradients. This study was performed under
financial support of RFBR, grants 99-01-00515 and 00-01-00370.

Multistage algorithms for numerical solution of ODEs
Yauheni Sonets& V. V. Bobkov
(Belarusian State University, Belarus)

For numerical solution of initial value problems for a system of nonlinear ordinary differential
equations (ODEs) in the form u0(t) = f(t; u(t))
one-step multistage algorithms of variable order are proposed. These algorithms are based on ap-
proximation of the original problem by initial value problems for systems of linear ODEs with
constant coefficients. In the general case for arbitrary functionf one does not have enough infor-
mation on structure of the exact solution. In the case of a system of linear ODEs such information
is available and can be used for construction of more efficient specialized methods.
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Multistage linearization of the original problem is performed on the basis of technique of succes-
sive corrections. The essence of this technique is successive improvement ofan initial approxima-
tion to the exact solution of the system of nonlinear ODEs within the integration step. Calculation
of the improved approximation is based on information on defect of the preceding one. Thus, the
proposed algorithms have a feedback with the systems they are applied to. This feedback affects
their structure and choice of their parameters.
Different variants of the algorithms and results of numerical experiments are discussed.

Are the Stability Estimates, in the Kreiss Matrix Theorem, Sharp ?
Marc Spijker
(Leiden University, The Netherlands)

In the stability analysis of numerical processes for solving initial value problems, one is often faced
with the task of estimating the spectral norm of then-th power of given matrices. Stable processes
are distinguished by the property that moderate upper bounds for these norms exist.
The Kreiss matrix theorem gives conditions under which such moderate bounds are valid. One
of the conditions in the theorem involves the resolvent of the matrices under consideration. This
so-called resolvent condition is known to imply upper bounds which grow linearly with the order
of the matrices as well as with the exponentn.
It is a long standing problem whether these upper bounds can be sharpened to bounds which grow
much slower than linearly with the order or withn. The solution to this problem will be given in
this talk. The underlying research was carried out jointly with S. Tracogna andB.D. Welfert.

Path Following-Collocation Method for Solving Burger’s Equation
Muhammed I. Syam
(United Arab Emirates University, UAE)

Anew numerical technique is presented for solving the Burger’s equation. It is pasedon the theory
of the Collocation and path following methods. Theoretical and numerical results are presented.

The dynamical behaviour of Runge-Kutta time discretizations for nonlinear parabolic prob-
lems near an equilibrium point
Mechthild M. F. Thalhammer & C. Gonzalez & A. Ostermann & C. Palencia
(University of Innsbruck, Austria)

Runge-Kutta time discretizations of nonlinear evolution equations are studied in an abstract Banach
space setting of analytic semigroups that includes fully nonlinear parabolic initial-boundary value
problems.
We give smooth and nonsmooth-data error estimates for the backward Euler method anda conver-
gence result for stronglyA(�)-stable Runge-Kutta methods. We further show that the geometric
properties near a hyperbolic equilibrium are well captured by the discretization.
Numerical examples illustrating the theoretical results are presented.
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DAE Structure and Index in Dependence on MOSFET Modelling in Circuit Simulation
Caren Tischendorf
(Humboldt-University of Berlin, Germany)

The simulation of MOS integrated circuits requires the inclusion of special models describing the
voltage-current or charge-current characteristics of the MOS elements. These models arise from
the solution of the Poisson equation describing the statical behaviour coupled with thecontinuation
equations describing the charge carrier transport in the semiconductor.
Different levels of the models may change the qualitative solution behaviour of the resulting DAE
equations. Beside conventional explicit models we analyze new semi-implicit MOSFET models
used in circuit simulation. We show the influence on the structure and the index of theresulting
DAEs.

Solving Partial Differential Equations with Using Power Polynomials
Zdzislaw W. Trzaska
(Warsaw University of Technology, Poland)

The paper presents new approach to explicit solutions for two linear simulataneous partial differ-
ential equations with damping termsux = Ri+ Lit; ix = Gu+ Cut (4)

wherex 2 (0; l) and t 2 (0;1), with u = u(x; t) and i = i(x; t) denoting the transversal
variables (e.g. voltage in an electrical transmission line or pressure in a hydraulic system) and
longitudinal variable (e.g. current or flow), respectively. The subscripts stay for derivatives with
respect to independent variablesx andt. Longitudinal and transversal parameters per unit length of
the system are denoted byR;L andG;C, respectively. Corresponding initialu(x; 0) andi(x; 0) as
well as boundaryu(l; t) andu(0; t) = A(t)i(0; t) conditions are specified. It is shown that solutions
for (1) can be based on particular forms of power polynomialsPn(y) = nXk=0 an;kyk; Tm(y) = m�1Xr=0 bm;ryr (5)

in indeterminatey = y(s) depending on the equations coefficients and the complex frequencys.
Some basic properties of the power polynomials (2) are investigated and links between them are
established. In result the solution for (1) are given byUn(y) = Pn(y)U0(s) + bTn(y)I0(s);In(y) = aTn(y)U0(s) + Pn�1(y)I0(s) (6)

Problems involving equalities and limits are also solved. ForN !1 we can writeUN+1IN+1 jN!1 = UNIN jN!1 = Q1 (7)

Substituting (2) into (3) and solving (4) forQ1 yieldsQ1 = y �py2 + 4y2a (8)
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which remains valid if the conditionQN+1 = QN for N ! 1 is replaced byQn(y) = Q0(s) forn = 1; 2; :::; N <1.

A new method to solve first order Systems of nonlinear two-point boundary value problems
Marnix Van Daele & J.R. Cash
(Universiteit Gent, Belgium)

Deferred correction, which looks like, �(�) = 0 (9)�(��) =  (�) (10)

is a widely used technique for the solution of first order systems of nonlinear two-point boundary
value problems dydx = f(x; y); a � x � b; g(y(a); y(b)) = 0: (11)

In an influential paper, Skeel has proven the following result. Consider the approximate numerical
solution of (11) on a mesh� : a = x1 < x2 < : : : < xN+1 = b. Denote by�y the restriction of the
continuous solutiony(x) to the finite grid�. Let � be a stable numerical method and assume that
the following conditions hold for the deferred correction scheme (9), (10) : (i)k���yk = O(hp),
(ii) k (�y) � �(�y)k = O(hr+p) and (iii)  (�w) = O(hr) for arbitrary functionsw having at
leastr continuous derivatives. If�(��) =  (�) thenk�� ��yk = O(hr+p) :
In the context of two-point BVPs,� can be chosen to be a Runge-Kutta methods of orderp while = � � �� where�� is a Runge-Kutta method of orderp + r. For most of the schemes derived
so farr = 2. Recently however, we have established the conditions to obtain higher values ofr
and in this talk we will consider a particular scheme based on Lobatto methods ofoverall order8
for which p = 4 andr = 4. Special attention will be paid to construction of interpolants and the
problem of error estimation.

Accuracy improvement with RKN methods
Tanja Van Hecke & Marnix Van Daele
(Universiteit Gent, Belgium)

Deferred correction is one of the acceleration techniques to improve the accuracy of a basic, simple
method to solve ODEs with boundary conditions. We applied this technique on second order
boundary value problems of the typey00 = f(x; y) and found a way to increase the order of the
basic numerical method by using a suited error estimator. The basic method as well as the error
estimator are based on mono-implicit Runge-Kutta-Nyström methods which have the advantage
that the dimension of the system to be solved when applying the numerical method on a BVP can
be strongly reduced. A maximization of the increase of order of accuracy will be discussed as well
as the stability of the scheme. Within this deferred correction scheme mono-implicit methods will
be compared with Lobatto IIIA methods especially in case of stiff problems.

53



Exponentially-fitted Runge-Kutta methods: construction and implementation
Guido Vanden Berghe& L. Ixaru & H. De Meyer
(Universiteit Gent, Belgium)

Exponentially-fitted Runge-Kutta (EFRK) methods withs stages are constructed, which exactly
integrate differential initial-value problems whose solutions are linear combinations of functions
of the formfxj exp(!x); xj exp(�!x)g, (! 2 R or iR; j = 0; 1; : : : ; jmax), where0 � jmax �bs=2� 1c, the lower bound being related to explicit methods, the upper bound applicable for col-
location methods. Explicit methods withs 2 f2; 3; 4g belonging to that class are constructed.
For these methods a study of the local truncation error is made, out of which follows asimple
heuristic to estimate the!-value. By combining a fourth-order explicit EFRK method with an
equivalent classical embedded (4,5) Runge-Kutta method a more sophistacted technique is devel-
oped for the estimation of the occurring!-values. Error and step-length control is carried out by
using the Richardson extrapolation procedure. Some numerical experiments show the efficiency of
the introduced methods. Some preliminary results for implicit EFRK methods will be presented.

Extrapolation methods in Lie groups
Jörg Wensch
(MLU Halle, Germany)

Considered are differential equations on Lie groups given byy0 = v(t; y)jy(t). Herey : R ! G is
a curve on a Lie group andv is a map into the corresponding Lie algebra. This Lie algebra is to be
interpreted as the set of right invariant vector fields.
The generalisation of Runge-Kutta methods of order3 and higher on this class of problems makes
the introduction of correction functions necessary. Here we consider the application of extrapola-
tion methods on this class of problems. An asymptotic expansion of the global error in quadratic
terms for symmetric methods is proved. The explicit midpoint rule is used as the basic method for
an extrapolation algorithm.
The new methods of order4 and6 are compared with standard extrapolation procedures of the
same order.

Structural analysis for stochastic DAEs in circuit simulation
Renate Winkler
(Humboldt-Universiẗat Berlin, Institut f̈ur Mathematik, Germany)

Modeling electrical networks influenced by thermal noise leads to specially structured differential-
algebraic equations (DAEs) disturbed by white noise. To understand these systemsit is necessary
to use the theory of (explicit) stochastic differential equations (SDEs). Weshow that this is only
possible if the noise sources do not disturb the constraints of the DAE. We then deriveexistence
and uniqueness results for the solutions of stochastic DAEs of index 1 or 2. Similarly, we obtain
convergence results for a semi-implicit Euler-method for specially structured stochastic DAEs of
index 1 or 2.
We express the necessary conditions in terms of the topology of the electrical network. Alterna-
tively, we discuss a model with colored noise sources.
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