Model order reduction for linear dynamical systems with quadratic outputs
Roland Pulch (Universität Greifswald), Akil Narayan
We consider initial value problems for linear time-invariant systems consisting of ordinary differential equations

$$
\begin{aligned}
E \dot{x}(t) & =A x(t)+B u(t), \quad x\left(t_{0}\right)=x_{0} \\
y(t) & =x(t)^{\top} M x(t)
\end{aligned}
$$

with state variables x and inputs u. The quadratic output y represents a quantity of interest defined by a symmetric matrix M of rank k. We investigate model order reduction (MOR) for systems of high dimension. The system can be transformed into a linear dynamical system with k linear outputs, see [1]. However, many MOR methods for linear dynamical systems become inefficient or even infeasible in the case of large numbers k. Alternatively, we transform the system into a quadratic-bilinear (QB) form with a single linear output. The properties of this QB system are analyzed. We apply the MOR technique of balanced truncation from [2] to the QB system, where a stabilization is required. The solution of quadratic Lyapunov equations is traced back to the solution of linear Lyapunov equations. We present numerical results for a relevant example including a high rank k, where the two MOR approaches are compared.

References

[1] R. Van Beeumen, K. Van Nimmen, G. Lombaert, K. Meerbergen: Model reduction for dynamical systems with quadratic output. Int. J. Numer. Meth. Engng. 91:3 (2012) 229-248.
[2] P. Benner, P. Goyal: Balanced truncation model order reduction for quadratic-bilinear control systems. arXiv:1705.00160v1, April 29, 2017.

