Minimal residual linear multistep methods

Barys Faleichyk (Belarusian State University)
Consider an initial value problem for the system of ODEs $y^{\prime}=f(t, y)$ and suppose that we have k starting values y_{0}, \ldots, y_{k-1} at points $\left\{t_{j}\right\}$ which are not necessarily equidistant. To compute $y_{k} \approx y\left(t_{k-1}+\tau\right)$ take an explicit linear multistep method with unknown coefficients:

$$
\begin{equation*}
y_{k}=\sum_{j=0}^{k-1}\left(\tau \beta_{j} f_{j}-\alpha_{j} y_{j}\right) \tag{1}
\end{equation*}
$$

On the other hand consider the corresponding classic p-step implicit BDF formula

$$
\begin{equation*}
c_{k-p} y_{k-p}+\ldots+c_{k} y_{k}=\tau f_{k}, \quad p \leq k \tag{2}
\end{equation*}
$$

In the talk we discuss what happens if on each step of numerical integration the coefficients $\left\{\alpha_{j}, \beta_{j}\right\}$ of (1) are chosen to minimize the norm of the residual of method (2). The main focus will lie on the most tractable case of linear problems with $f(t, y)=A(t) y+b(t)$.

