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hp-FEM solutions for option price Bates’ model
Andrés Ávila Barrera (Universidad de La Frontera), Cecilia Rapimán

For valuating options, several stochastic models have been developed,
where several assumptions on the market are imposed. For example, Black-
Scholes’ model considers constant volatility and local small changes. To
overcome these simplifications, Bates’ model [4] includes stochastic volatil-
ity and jumps, which corresponds to the following system of stochastic
differential equations{
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which can be reduced to a partial integro-differential equation on Ω ×
(0, T ) = (0, S0)× (0, 1)× (0, T )
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C (S exp (x) , y, t)W (dx) = (r + λ)C.

with boundary conditions C(0, y, t) = 0, C(S0, y, t) = S0 − K and final
condition C(S, y, T ) = (S −K)+. The conditions on y are undefined.
Based on Achdou & Tchou [1], Hilber et al. [5], [6] and Reich et al. [9],
we show the variational formulation and prove a Gårding type inequal-
ity. Also localization error is obtained. We base our numerical studies on
Almendral & OOsterlee [2], Ballestra & Sgarra [3] and Miglio & Sgarra
[8]. We propose that hp-FEM methods [7], as special method of singularly
elliptic problems, can be used to improve unstabilities of the FEM meth-
ods detected in the simplification of the splitting. Some studies on the
parameters on the effect of convective part over the diffusion part are also
considered.
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