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This contribution is concerned with semi-implicit numerical schemes for
the discretization of strongly degenerate parabolic equations of the type

ut + f(u)x = A(u)xx, A(u) =

∫ u

0

a(s) ds, (1)

posed on some finite x-interval along with initial and boundary condi-
tions, and where the function a is piecewise continuous and satisfies a(u) ≥
0 for all u. In particular, a(u) = 0 is possible on u-intervals of posit-
ive length, so (1) may turn into a first-order hyperbolic conservation law
where the location of the type-change interface is unknown a priori. Thus,
solutions of (1) are in general discontinuous. Consequently, the well-posedness
theory and numerical analysis of (1) are based on the framework of en-
tropy (weak) solutions.
Applications of (1) include a model of sedimentation of suspensions in
mineral processing and wastewater treatment [4, 5] (after suitable simpli-
fications). The efficient numerical solution of (1) is therefore of substantial
theoretical and practical interest. Explicit monotone difference approxim-
ations to (1) go back to [7], are easily implemented, and provably converge
to the entropy solution. However, the restrictive CFL condition makes ex-
plicit schemes unacceptably slow. An alternative are nonlinearly implicit
semi-implicit schemes that treat the diffusive term implicitly and allow
for a less restrictive CFL condition. Such methods are also supported by
a convergence theory [2] and have turned out to be more efficient than
their explicit counterparts in terms of error reduction versus CPU time [6].
However, their implementation requires the use of nonlinear solvers (e.g.,
Newton-Raphson method) which may fail to converge.
It is the purpose of this contribution to propose linearly implicit methods
for the approximation of solutions of (1) as an alternative. These methods
go back to Berger et al. [1], are based on a particular separate discretiz-
ation of the diffusive term, enjoy a favorable CFL condition, and require
the solution of a linear system at every time step, which is an advantage
in practical applications. Preliminary results [3] show that these methods
are competitive with the known explicit and nonlinearly implicit schemes
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in terms of accuracy and efficiency. It is demonstrated that these schemes
are monotone, which is the key property required to demonstrate conver-
gence to an entropy solution. The full convergence analysis is currently in
preparation.
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