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Exponential Krylov subspace time integration for nanophotonics applic-
ations
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Behavior of light in nanophotonics structures such as photonic crystals or
layers of strongly scattering materials is often described by the time de-
pendent Maxwell equations. The equations are usually supplied with the
nonreflecting boundary conditions, e.g., the so-called perfectly matched
layers (PML). The method of choice for solving these problems by phys-
icists and engineers is the finite difference time domain method. This
method is based on the staggered finite differences in space and staggered
leap-frog in time.
In this talk we demonstrate that exponential time integration with Krylov
subspace evaluations of the matrix exponential actions can be efficient in
these applications. We discuss how the following techniques can be em-
ployed to achieve this efficiency [2].

1. To keep the Krylov subspace dimension moderate, the rational shift-
and-invert (SAI) Krylov subspaces are used [4, 5]. This means that in-
stead of the regular Krylov subspace Km(A, v) = {v, Av, . . . , Am−1v},
we work with Km((I + γA)−1, v) for some γ > 0.

2. In three space dimensions, the actions of (I+γA)−1 should be carried
out by iterative linear solvers and we briefly discuss some precondi-
tioning strategies to do this.

3. In our (limited) experience, it is crucial to employ the Krylov sub-
space in such a way that one (or just several) Krylov subspace(s) suf-
fice for the whole time interval. For non-autonomous problems this
leads to block Krylov subspaces [1].

In some cases these techniques result in a method exhibiting an optimal
performance in the sense that the number of Krylov subspace outer (for
the matrix exponential actions) and inner (for (I + γA)−1 actions) itera-
tions do not grow as the spatial mesh gets finer. Finally, we comment on
how this approach is related to a general across-time waveform relaxa-
tion framework [3]. This facilitates an across-time parallelization of the
method, which is a topic of our current research.
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