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Energy conservation in modified Nyström methods for separable Hamilto-
nian systems

Numerical integration methods that preserve structural properties of time dependent differential equations have often
improved stability and smaller errors in long-term simulations than classical standard methods like Runge–Kutta or
BDF. In the present paper an energy conserving Galerkin type approach of Betsch and Steinmann is generalized
to modified Nyström methods for separable Hamiltonian systems. The benefits of this new class of methods are
illustrated by numerical tests for a benchmark problem from celestial mechanics.

1. Structure preservation in separable Hamiltonian systems

Separable Hamiltonian systems

ẋ(t) = H�
p (x, p) , ṗ(t) = −H�

x (x, p) (1)

are characterized by a Hamiltonian H(x, p) = V (x) + 1
2p�M−1p with a constant positive definite mass matrix M

and a continuously differentiable potential V : IRd → IR .

The N -body problem may be considered as a typical example [2, Example IV.1.3]. Here we have d = 3N and
x = (x1, x2, . . . , xN )� with xi ∈ IR3 denoting the position coordinates of the i-th particle that has mass mi. The
mass matrix is given by M = blockdiag1≤i≤N miI3 . The interaction between particles is characterized by a distance
potential V (x) :=

∑N
i=2

∑i−1
j=1 Vij(‖xi − xj‖2) with continuously differentiable functions Vij : (0,∞) → IR .

It is well known that the total energy H(x, p), the total linear momentum
∑

i pi and the angular momentum∑
i xi × pi are invariants of the N -body problem, i. e., for any given initial values x0, p0 these quantities remain

constant for all t ∈ [t0, te]. A 6-body problem with model data from [2, Table I.2.2] that describes the motion of the
outer planets in the solar system will be used as test example.

The separable Hamiltonian systems (1) are equivalent to the system Mẍ = −∇V (x) that we rewrite in the form

ẋ(t) = y , ẏ(t) = g(x, y) := −M−1 ∇V (x) . (2)

Any standard time integration method for ordinary differential equations (ODEs) may be applied to (2). Standard
methods like Runge–Kutta methods or linear multi-step methods guarantee a small discretization error for sufficiently
small time stepsizes h. But, in general, they do not preserve all invariants of the analytical solution.

This is illustrated by test results for two implicit Runge–Kutta methods. Fig. 1 shows the errors in three invariants
for fixed stepsize computations. The three-stage Radau IIA method [3, Sect. IV.8] preserves only the linear invariants
and has growing errors in H(x, p) and in the angular momentum. The results are substantially improved using a
simplectic method. The right plot of Fig. 1 illustrates that the four-stage Lobatto IIIA-IIIB pair [2, Sect. II.2.2]
preserves linear and angular momentum up to machine precision and the error in H(x, p) remains bounded.
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Figure 1: Errors in invariants of the 6-body problem if (2) is solved by classical Runge–Kutta methods.

PAMM · Proc. Appl. Math. Mech. 3, 557–558 (2003) / DOI 10.1002/pamm.200310547
 



0 5000 10000 0 5000 10000
10

−20

10
−10

10
0

10
10

time  t

re
la

tiv
e 

er
ro

r
Radau IIA, s=3 (projected)

Energy
Linear Momentum
Angular Momentum

0 50000 100000 150000 200000
10

−20

10
−10

10
0

10
10

time  t

re
la

tiv
e 

er
ro

r

Lobatto IIIA−IIIB, s = 4 (projected)

Energy
Linear Momentum
Angular Momentum

Figure 2: Errors in invariants of the 6-body problem. Classical Runge–Kutta methods with projection steps.

Energy conservation could be enforced by projection steps that project the numerical solution (xn, pn) after each
time step back to the manifold { (x, p) : H(x, p) = H(x0, p0) } [3, pp. 470f]. However, Fig. 2 shows that these
projection steps destroy other important inherent properties of the Runge–Kutta methods. For both methods the
error in H(x, p) is reduced to machine precision but now neither linear nor angular momentum are preserved.

2. Energy conserving modified Nyström methods

Betsch and Steinmann [1] study energy conserving Galerkin methods for solving (2) in a time step tn−h = tn−1 → tn,
(n > 0). The known drawbacks of projected space variables (see Fig. 2) are avoided substituting g(x, y) in the
right hand side of (2) by κn · g(x, y) with a scalar κn ≈ 1 that is adjusted such that H(xn, yn) = H(xn−1, yn−1) .
For a method of order p this condition determines implicitly a constant κn with κn = 1 + O(hp) provided that
∇V (xn−1)�pn−1 �= 0 [4].

The methods of Betsch and Steinmann may be rewritten as modified Nyström methods

xn = xn−1 + hyn−1 + h2
s∑

i=1

biκng(Xni, Yni) , yn = yn−1 + h

s∑

i=1

wiκng(Xni, Yni) , H(xn, yn) = H(xn−1, yn−1)

Xni = xn−1 + cihyn−1 + h2
s∑

j=1

aijκng(Xni, Yni) , Yni = yn−1 + h
s∑

j=1

āijκng(Xni, Yni) , ( i = 1, . . . , s )
(3)

with special Runge–Kutta–Nyström parameters aij , āij , bi, wi [4, Thm. 3.14]. All methods (3) conserve energy
and linear momentum, see Fig. 3. Additionally, the angular momentum is preserved if the corresponding classical
method (κn := 1 in (3) ) has this property [4], see also [2, Sect. IV.2.3].
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Figure 3: Errors in invariants of the 6-body problem if (2) is solved by modified Nyström methods.
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