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A note on the uniform perturbation index1

ABSTRACT. For a given differential-algebraic equation (DAE) the perturbation index

gives a measure for the sensitivity of a solution w. r. t. small perturbations. If we consider,

however, classes of DAEs (e. g. all DAEs that arise as semi-discretizations of a given partial

DAE by the method of lines) then the error bound in the definition of the perturbation

index may become arbitrarily large even if the perturbation index does not exceed 1. We

illustrate this fact by 2 examples and define as alternative the uniform perturbation index

that gives simultaneously error bounds for all DAEs of a given class. We prove that in one

example each individual DAE has perturbation index 1 but the uniform perturbation index

is 2. Another example illustrates that the class of all finite difference semi-discretizations

may even have no uniform perturbation index if the given partial DAE has perturbation

index 2.

KEY WORDS: ifferential-algebraic equations, perturbation index, Baumgarte stabilization,

partial DAEs, method of lines

1 Introduction

One main difficulty in the numerical integration of initial value problems for higher index

differential-algebraic equations (DAEs)

F (x′(t), x(t), t) = 0 , x(0) = x0 , t ∈ [0, T ] (1)

is the fact, that the solution does not depend continuously on small perturbations in the

equations. The discrete analogue is the amplification of small errors during the numerical

integration. Such errors arise e. g. as round-off errors or because of stopping the itera-

tive solution of nonlinear equations. A quantitative measure of this effect is given by the

perturbation index

1This paper is an extended version of a talk presented at the conference “DAEs, Related Fields and
Applications” Oberwolfach (Germany), November 1995.
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Definition 1 ([8, p. 478f]) The DAE (1) has perturbation index m along a solution

x(t) on [0, T ], if m is the smallest integer such that, for all functions x̂(t) having a defect

F (x̂′(t), x̂(t), t) = δ(t) there exists on [0, T ] an estimate

‖x̂(t)− x(t)‖ ≤ C0(‖x̂(0)− x(0)‖+ max
τ∈[0,t]

‖δ(τ)‖+ . . .+ max
τ∈[0,t]

‖δ(m−1)(τ)‖) (2)

whenever the expression on the right hand side is sufficiently small.

If appropriate discretization methods are used then the error that is caused by the amplifica-

tion of perturbations in the numerical solution is bounded by C∗0 · 1
hm−1 ∆ . Here ∆ denotes

an upper bound for the errors that arise in one single step of integration, h is the stepsize

of integration. This term can be interpreted as discretization of the error bound (2) for the

analytical solution (see e. g. [7], [1]).

As long as the constants C0 and C∗0 are of moderate size the sensitivity of the solution

w. r. t. perturbations can be completely characterized by the integer m in (2), i. e. by the

perturbation index. These constants C0 and C∗0 depend in general on bounds for partial

derivatives of F in a neighbourhood of the analytical solution x(t), for many applications

they are O(1), [8, p. 480f]. The situation changes if we consider a class of DAEs with a

parameter that may be arbitrarily small. Such a class appears e. g. if a partial DAE ([4], [5])

is discretized in space by the method of lines. The resulting semi-discretized DAEs depend

on the space discretization. If the space discretization is refined then the constant C0 in (2)

may become arbitrarily large. Thus for practical computations the error bound C∗0 · 1
hm−1 ∆

does not give any useful information about the amplification of errors during integration.

In Section 2 we study this effect in detail for a Baumgarte-like stabilization of differen-

tial-algebraic systems of index 2. For large values of the Baumgarte coefficient α the error

bound of Definition 1 is useless since limα→∞C0 =∞ . That is why we introduce in Section

3 the uniform perturbation index for a class of DAEs. In Section 4 this concept is applied

to a system of 2 linear partial differential equations [5, Example 1]. This partial DAE has

index 2 but the semi-discretization by finite differences on an equidistant grid is a DAE of

perturbation index 1. The main result of Section 4 is that for this example — depending on

the coefficients of the partial DAE — either

• the uniform perturbation index of the class of all these semi-discretizations is 2 and

coincides thus with the index of the underlying partial DAE or

• the class of all these semi-discretizations has no uniform perturbation index at all.
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2 A perturbation analysis for stabilized differential-algebraic sys-

tems of index 2

In this we consider the differential-algebraic system

y′(t) = f(y(t), z(t))

0 = g(y(t))

 , t ∈ [0, T ] , y(0) = y0 , z(0) = z0 (3)

that is supposed to have a solution y : [0, T ]→ R
ny , z : [0, T ]→ R

nz . We assume that in

a neighbourhood of this solution functions f and g are sufficiently differentiable and satisfy

the index-2 condition “[gyfz](η, ζ) non-singular”.

The differential-algebraic system (3) has (perturbation and differential) index 2 [8, p. 480f]:

We have

‖ŷ(t)− y(t)‖+‖ẑ(t)− z(t)‖ ≤

≤ C0(‖ŷ(0)− y(0)‖+ max
τ∈[0,t]

‖δ(τ)‖+ max
τ∈[0,t]

‖θ(τ)‖+ max
τ∈[0,t]

‖θ′(τ)‖)
(4)

for all t ∈ [0, T ] if ŷ′(t) = f(ŷ, ẑ) + δ(t) and g(ŷ(t)) = θ(t) . Here the constant C0 de-

pends on the length T of the time interval and on upper bounds for ‖[(gyfz)−1](η, ζ)‖ and

for partial derivatives of f and g.

Similar to the stabilization of model equations for constrained mechanical systems that was

introduced by Baumgarte ([3]) the index of (3) can be reduced to 1 if the algebraic constraints

g(y) = 0 are substituted by

0 =
1

α

d

dt
g(y(t)) + g(y(t)) (5)

with a constant α > 0 . With this substitution the analytical solution of (3) remains un-

changed since g(y(t)) = 0 implies d
dt
g(y(t)) = 0 and thus also (5). On the other hand

consistent initial values for (3) satisfy g(y(0)) = 0 such that (5) results in g(y(t)) = 0 ,

(t ∈ [0, T ]).

As for (3) we study the sensitivity of the solution of the stabilized system w. r. t. small per-

turbations comparing (y(t), z(t)) with functions (ŷα(t), ẑα(t)) that satisfy for t ∈ [0, T ]

ŷ′α(t) = f(ŷα(t), ẑα(t)) + δ(t)

θ(t) =
1

α

d

dt
g(ŷα(t)) + g(ŷα(t))

 (6)

The key to these error bounds are the following estimates:
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Lemma 1 a) Let functions δ̃ ∈ C[0, T ] , θ̃ ∈ C1[0, T ] and a constant α > 0 be given.

The solutions of the linear differential equation

w′(t) + αw(t) = δ̃(t) + αθ̃(t) (7)

satisfy

|w(t)− θ̃(t)| ≤ |w(0)− θ̃(0)|e−αt +
1

α
· max
τ∈[0,t]

(|δ̃(τ)|+ |θ̃′(τ)|) ,

|w′(t)| ≤ |w′(0)|e−αt + max
τ∈[0,t]

(|δ̃(τ)|+ |θ̃′(τ)|) .

b) If δ̃(t) ≡ 0 , θ̃(t) = Θ cos t
ε

and w(0) = ε2α2Θ/(1 + ε2α2) with (small) positive pa-

rameters Θ, ε then the solution w(t) of (7) is

wα(t) = (1− 1

1 + ε2α2
) Θ cos

t

ε
+

εα

1 + ε2α2
Θ sin

t

ε
. (8)

Proof: The solution of (7) is given by

w(t) = w(0)e−αt +

∫ t

0

e−α(t−τ)(δ̃(τ) + αθ̃(τ)) dτ . (9)

Integration by parts results in

α

∫ t

0

e−α(t−τ)θ̃(τ) dτ =
[
e−α(t−τ)θ̃(τ)

]t
0
−
∫ t

0

e−α(t−τ)θ̃′(τ) dτ

and finally we have∫ t
0
e−α(t−τ) dτ = 1

α
(1− e−αt) < 1

α
,

i. e.

|
∫ t

0

e−α(t−τ)(δ̃(τ)− θ̃′(τ)) dτ | < 1

α
· max
τ∈[0,t]

(|δ̃(τ)|+ |θ̃′(τ)|) .

The estimate for |w′(t)| is obtained from w′(t) = δ̃(t)− α(w(t)− θ̃(t)) . To prove part b)

of the lemma the given functions δ̃, θ̃ are inserted into (9). �

We now return to Eqs. (6). Because of

d

dt
g(y(t)) = gy(y(t))y′(t) = [gyf ](y(t), z(t))
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Eqs. (5) can be solved w. r. t. the algebraic components z and the stabilized system is of

(differential and perturbation) index 1 ([8, p. 480]), we get

‖ŷα(t)− y(t)‖+ ‖ẑα(t)− z(t)‖ ≤

≤ C0,α(‖ŷα(0)− y(0)‖+ ‖ẑα(0)− z(0)‖+ max
τ∈[0,t]

‖δ(τ)‖+ max
τ∈[0,t]

‖θ(τ)‖) .
(10)

In general, however, this estimate can be satisfied for large values of α only, if C0,α →∞ ,

(α→∞). This is not surprising since (5) approximates for large values of α the algebraic

constraint g(y) = 0 of the index-2 system (3) and there is (per definitionem) no estimate

like (10) for systems of perturbation index 2.

Example 1 The system y′1 = y′2 = z , 0 = y1 + y2 is of index 2. The solution of the

initial value problem y1(0) = y1,0 is constant:

0 = y1 + y2 ⇒ 0 = y′1 + y′2 = 2z ⇒ z(t) ≡ 0 , y1(t) ≡ y1,0 , y2(t) ≡ −y1,0 .

Consider now functions ŷα, ẑα that are defined by

ŷα,1(t) = y1,0 +
1

2
(wα(t)− wα(0)) , ŷα,2(t) = wα(t)− ŷα,1(t) , ẑα(t) =

1

2
w′α(t)

with wα(t) from (8). These functions satisfy g(ŷα(t)) = ŷα,1(t) + ŷα,2(t) = wα(t) and we

get in (6) δ(t) ≡ 0 , θ(t) = Θ cos t
ε

(see Lemma 1), i. e. ‖δ(t)‖ = 0 , ‖θ(t)‖ = O(Θ) ,

‖θ′(t)‖ = O(1
ε
Θ) . Straightforward computations give

|ẑα(t)− z(t)| = 1

2
|w′α(t)| = 1

2
| − εα2

1 + ε2α2
sin

t

ε
+

α

1 + ε2α2
cos

t

ε
| ·Θ

and for α ≥ 1 the constant C0,α in (10) has to satisfy C0,α ≥ 1
12

√
α since the special choice

ε = 1√
α

results in ŷα,1(0) = y1(0), |ŷα,2(0)− y2(0)| = |wα(0)| = α
1+α

Θ ≤ Θ, |ẑα(0)− z(0)| =
1
2

α
1+α

Θ ≤ Θ, |θ(t)| ≤ Θ and |ẑα(π
2
ε)− z(π

2
ε)| = 1

2
α3/2

1+α
Θ ≥ 1

4

√
αΘ .

I. e. standard perturbation index theory gives with (10) an error estimate for the stabilized

system that grows rapidly for α→∞ . If max
τ∈[0,t]

‖θ′(τ)‖ is of moderate size and α� 1

then (10) overestimates the influence of small perturbations on (y(t), z(t)) substantially,

(see Example 2).

It is known from the literature (e. g. [2]) that neither differential nor standard perturbation

index is an appropriate measure for the difficulties that one has to expect in the numerical

solution of Baumgarte-like stabilized differential-algebraic systems with large Baumgarte

coefficients. Baumgarte stabilization reduces the index (in our example from 2 to 1) but

because of boundary layers (see the terms . . . e−αt in Lemma 1) the numerical solution of

the index-reduced system might be even more complicated than that of the original higher

index system if the Baumgarte coefficients are large. Furthermore for large Baumgarte

coefficients the index-reduced system is less robust against perturbations than the (low)

perturbation index suggests.
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3 The uniform perturbation index

The results of Section 2 motivate the extension of the perturbation analysis to classes of

DAEs

Fα(x′(t), x(t), t) = 0 , x(0) = x0 , t ∈ [0, T ] (11)

where α ∈Mα denotes some free parameter. In this note we restrict ourselves to scalar

parameters α, the dimension of x (and thus also the norm ‖ · ‖ in (12)) may vary with α

(see Section 4).

Definition 2 The class of DAEs (11) has uniform perturbation index m along solutions

xα(t) on [0, T ], if m ≥ 1 is the smallest integer such that, for all α ∈Mα and for all

functions x̂α(t) having a defect Fα(x̂′α(t), x̂α(t), t) = δ(t) there exists on [0, T ] an estimate

‖x̂α(t)− xα(t)‖ ≤ C0(‖x̂α(0)− xα(0)‖+ max
τ∈[0,t]

‖δ(τ)‖+ . . .+ max
τ∈[0,t]

‖δ(m−1)(τ)‖) (12)

whenever the expression on the right hand side is sufficiently small. Here C0 denotes a

constant that is independent of α and δ(τ).

Remarks 1 a) The condition m ≥ 1 in Definition 2 can be relaxed to m ≥ 0 if for

m = 0 the term δ(m−1)(τ) is interpreted as
∫ τ

0
δ(w) dw (cf. [8, p. 479]). I. e. the class

of DAEs (11) has the uniform perturbation index m = 0 if instead of (12) the (stronger)

estimate

‖x̂α(t)− xα(t)‖ ≤ C0(‖x̂α(0)− xα(0)‖+ max
τ∈[0,t]

‖
∫ τ

0

δ(w) dw‖ )

is satisfied.

b) The idea of error bounds that are independent of a (small) parameter is extensively used

in the analysis of singular perturbation problems. As an example we refer to the work of

Hairer et al. [6] and Lubich [9] who investigate in close connection to DAE-theory singularly

perturbed ordinary differential equations (ODEs) that all have perturbation index 0 ([8,

p. 479]). In terms of Definition 2 the class of singularly perturbed ODEs in [6] has uniform

perturbation index 1. The class of singular singularly perturbed ODEs that is considered in

[9] has even uniform perturbation index 3, i. e. the uniform perturbation index exceeds the

classical one by 3.

c) Mattheij [10] and Wijckmans [12] analyse linear DAEs that are “close to a higher-index

DAE” ([12, pp. 53ff, 73ff]) and study the sensitivity of the solution w. r. t. small perturba-

tions. The present paper is closely related to their approach and uses with Lemma 1 the
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same basic tool in the proof of uniform error estimates. The extension of the well estab-

lished concept of perturbation index from individual DAEs to classes of DAEs gives a unified

framework for various case studies from the literature.

Example 2 Consider the class of all Baumgarte-like stabilized differential-algebraic sys-

tems of index 2 with parameter α ≥ α0 > 0 that was introduced in Section 2. If the

parameter α is fixed then these stabilized systems have the classical perturbation index 1.

If we consider, however, the class of all these systems then estimate (12) can not be satisfied

with m = 1 and a constant C0 that is independent of α (see Example 1).

Applying componentwise Lemma 1 to d
dt
g(ŷα(t)) + αg(ŷα(t)) = αθ(t)

d

dt
g(ŷα(t)) + αg(ŷα(t)) = αθ(t)

we get g(ŷα(t)) = θ̂(t) with

‖θ̂(t)− θ(t)‖ ≤ ‖g(ŷα(0))− θ(0)‖ · e−αt +
1

α
· max
τ∈[0,t]

‖θ′(τ)‖ ,

‖θ̂′(t)‖ ≤ ‖ d
dt
g(ŷα(t))

∣∣∣
t=0
‖ · e−αt + max

τ∈[0,t]
‖θ′(τ)‖ ,

Because of d
dt
g(ŷα(t)) = gy(ŷα(t))ŷ′α(t) = [gyf ](ŷα(t), ẑα(t)) + gy(ŷα(t))δ(t) and

g(y(0)) = [gyf ](y(0), z(0)) = 0 we have

ŷ′α(t) = f(ŷα, ẑα) + δ(t)

θ̂(t) = g(ŷα(t))

with

‖θ̂(t)‖ ≤ ‖θ(t)‖+
1

α0

max
τ∈[0,t]

‖θ′(τ)‖+O(1)(‖ŷα(0)− y(0)‖+ ‖θ(0)‖)

‖θ̂′(t)‖ ≤ max
τ∈[0,t]

‖θ′(τ)‖+O(1)(‖ŷα(0)− y(0)‖+ ‖ẑα(0)− z(0)‖+ ‖θ′(0)‖+ ‖δ(0)‖) ,

(the constants in the O(.)–terms are independent of α). Following the lines of standard

perturbation index theory (see (4)) estimate (12) with m = 2 is proved. I. e., the class

of all Baumgarte-like stabilized differential-algebraic systems of index 2 with parameter

α ≥ α0 > 0 has uniform perturbation index 2.

Remarks 2 a) The uniform perturbation index remains unchanged if the class of DAEs

that is considered in Example 2 is extended by the index-2 system (3), i. e. by the limit case

α→∞ .

b) The discrete analogue of the uniform error bound in Example 2 is an error bound

C∗0,∞ · 1
h
∆ with a constant C∗0,∞ that is independent of α. I. e., if appropriate discretization
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methods are used then the amplification of small errors ∆ during integration is bounded

by min(C∗0,α∆, C∗0,∞ · 1
h
∆) with limα→∞C

∗
0,α =∞ and C∗0,∞ = O(1) . For large values

of α and stepsizes h of moderate size the uniform error bound C∗0,∞ · 1
h
∆ is substantially

smaller than the error bound C∗0,α∆ from standard perturbation index theory.

c) If the class of DAEs in Example 2 is restricted to systems with α < α and a fixed α

then the uniform perturbation index of the class is 1 since (12) with m = 1 can be proved

with C0 = C0,α .

d) The analysis for the index-2 case is straightforwardly extended to prove that the classical

Baumgarte stabilization for constrained mechanical systems ([2]) results in a class of index-1

DAEs that has uniform perturbation index 3.

4 Semidiscretizations of partial DAEs – a case study

Uniform error bounds found our special interest since recently partial DAEs and its semi-

discretizations have been considered (e. g. [4]). With one example we illustrate in this that

uniform error estimates in the sense of Definition 2 usually describe correctly the sensitivity

of semi-discretized DAEs w. r. t. small perturbations.

Example 3 [5, Example 1]] Consider the system of 2 linear partial differential equations

ut −
1

4
vxx + %v = fu(x, t)

−1

4
uxx +

1

4
vxx + v = f v(x, t)

(13)

for 0 ≤ x ≤ L , 0 ≤ t ≤ T with initial conditions

u(x, 0) = gu(x) , v(x, 0) = gv(x) , (0 ≤ x ≤ L)

and homogenous Dirichlet boundary conditions, f := (fu, f v)T , g := (gu, gv)T . % ∈ R
denotes some (fixed) parameter, we will consider the cases % = 0 and % = −2 in detail.

We suppose that functions f and g are sufficiently differentiable and that g satisfies the

boundary conditions. Furthermore we suppose that u, v, f and g have series expansions

u(x, t) =
∞∑
n=1

φn(x)un(t) , v(x, t) =
∞∑
n=1

φn(x)vn(t) , . . .

with φn(x) := sin(nπx
L

) . Under suitable smoothness assumptions the coefficients un(t),

vn(t), (n ≥ 1) are the solutions of the initial value problems

un(0) = gun , vn(0) = gvn
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for the linear constant-coefficient DAE

u′n(t) + (%+
1

4
λ2
n)vn(t) = fun (t)

1

4
λ2
nun(t) + (1− 1

4
λ2
n)vn(t) = f vn(t)

(14)

with λn := nπ
L

.

Consider now the discretization by finite differences on an equidistant grid 0 = x0 < x1 <

< . . . < xN < xN+1 = L , xi := ih , h = L/(N + 1) . Let U(t) = (uN1 (t), . . . , uNN(t))T ,

V (t) = (vN1 (t), . . . , vNN (t))T

U(t) = (uN1 (t), . . . , uNN(t))T , V (t) = (vN1 (t), . . . , vNN (t))T

with uNi (t) ≈ u(xi, t) , vNi (t) ≈ v(xi, t) , (i = 1, . . . , N) and

F u(t) = (fu(x1, t), . . . , f
u(xN , t))

T , F v(t) = (f v(x1, t), . . . , f
v(xN , t))

T ,

Gu = (gu(x1), . . . , gu(xN))T , Gv = (gv(x1), . . . , gv(xN))T .

The finite difference approximation satisfies U(0) = Gu , V (0) = Gv ,

U ′(t)− 1

4
Ah · V (t) + % · V (t) = F u(t)

−1

4
Ah · U(t) +

1

4
Ah · V (t) + V (t) = F v(t)

(15)

with the symmetric tridiagonal matrix

Ah =
1

h2



−2 1 0 0

1 −2 1

. . .

1 −2 1

0 1 −2


∈ RN×N

that has eigenvalues µi = − 4
h2 sin2( iπ

2(N+1)
) and eigenvectors

Φi = ( sin(
iπ

N + 1
) , sin(

2iπ

N + 1
) , . . . , sin(

Niπ

N + 1
) )T , (i = 1, . . . , N) .

We rewrite vectors U(t), V (t), F u(t), F v(t), Gu, Gv as linear-combinations of eigenvectors

of Ah:

U(t) =
N∑
i=1

1

‖Φi‖2

Φi · Ui(t) , V (t) =
N∑
i=1

1

‖Φi‖2

Φi · Vi(t) , . . .



42 M. Arnold

Multiplying the equations (15) subsequently by ΦT
1 , ΦT

2 , . . . , ΦT
N we get the equivalent

system of equations

U ′i(t) + (%+
1

4
Λ2
i )Vi(t) = F u

i (t)

1

4
Λ2
iUi(t) + (1− 1

4
Λ2
i )Vi(t) = F v

i (t)
(16)

with Λi :=
√
−µi = 2

h
sin( iπ

2(N+1)
) , (i = 1, . . . , N) since AhΦi = µiΦi = −Λ2

iΦi and

ΦT
j Φi =

{
‖Φi‖2

2 if i = j ,

0 if i 6= j .

This change of coordinates has no influence on the sensitivity of the solution w. r. t. small

perturbations. For the perturbation analysis we prefer Eqs. (16) since they are quite similar

to the corresponding equations (14) for the coefficients un(t) of the solution of the partial

DAE (13). If i ≤ N is fixed then we get

lim
N→∞

Λi = λi =
iπ

L

and in the limit case N →∞ Eqs. (16) are transferred to (14).

For % = 0 this analysis is carried out in [5]. They observe that (14) has (differential and

perturbation) index 1 if λ2
n 6= 4 and index 2 if λ2

n = 4 . Up to now there is no widely

accepted index concept for partial DAEs (see [4] for a comprehensive study of this subject).

But for the special example (13) it seems to be natural to call (13) a partial DAE of index

1 if the DAEs (14) have index 1 for all n ∈ N and a partial DAE of index 2 if there is one

n ∈ N such that (14) has index 2 ([4, Example 2]). Since λn depends on L the index of the

partial DAE varies with the length L of the domain.

If % ∈ {0,−2} and L is fixed then the finite difference approximation (16) has always index

1 if the discretization is sufficiently fine (i. e. h is sufficiently small): this follows in the case

λ2
i 6= 4 from limN→∞ Λi = λi and in the case λ2

i = 4 from Λi 6= λi . In this sense “the

method of lines approximation . . . acts like a regularization” ([5]) if the partial DAE (13)

has index 2. However, in view of the results of Section 2 we do not expect that the class

of all semidiscretizations (15) has uniform perturbation index 1 if the partial DAE (13) has

index 2, i. e. if there is an n0 ∈ N with λ2
n0

= 4 .

Therefore the most interesting case is given by DAEs (14) with λ2
n ≈ 4 and λ2

n 6= 4 . These

problems can be interpreted as perturbations of an index-2 DAE (Eqs. (14) with λ2
n = 4 ),

they were studied in great detail by Söderlind ([11]). He proved that the stability of the

lower index system (i. e. (14) with 0 < |λ2
n − 4| � 1 ) depends strongly on the sign of the

perturbation. To analyse this phenomenon we solve the second equation in (14) w. r. t.

vn(t), insert this expression into the first one and get (if % ∈ {0,−2} )
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u′n(t) + αun(t) = fun (t) + α · 1
1
4
λ2
n

f vn(t)

vn(t) =
1

%+ 1
4
λ2
n

(fun (t)− u′n(t))
(17)

with

α := − 1

4
λ2
n

%+ 1
4
λ2
n

1− 1
4
λ2
n

.

0 2 4 6
−5

0

5

10

0 2 4 6
−5

0

5

10

Figure 1: Coefficient α in (17) vs. λn for two values of %. The asterisks at the abscissa

mark the eigenvalues Λ1,Λ2, . . . ,Λ6 of the semi-discretized problem (15) with N = 6 and

L = π .

The way in that errors are propagated in (17) is determined by α. If α > 0 then these

equations have the same basic structure as the Baumgarte-like stabilized systems of Section

2 ( un(t)→ g(y(t)) , vn(t)→ z(t) ), the perturbation analysis of Sections 2 and 3 can

be carried over straightforwardly. If, however, α < 0 then errors may grow like e−αt.

This is still acceptable if 0 ≥ α ≥ −α0 with a positive constant α0 of moderate size (i. e.

e−αt ≤ eα0t ), but if λ2
n → 4 then α may become arbitrarily small. Fig. 1 shows α vs. λn

in the two cases % = 0 (left) and % = −2 (right). Depending on % we get the following

results:

Lemma 2 Let a positive constant ∆λ ∈ (0, 1] be given.

a) If % ∈ {0,−2} then the class of all DAEs (14) with |λ2
n − 4| ≥ ∆λ > 0 has uniform

perturbation index 1.

b) If % = 0 then the class of all DAEs (14) with λ2
n ∈ (0, 4−∆λ] ∪ [4,∞) has uniform

perturbation index 2.

c) If % = −2 then the class of all DAEs (14) with λ2
n ∈ (0, 4] ∪ [4 + ∆λ,∞) has uniform
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perturbation index 2.

d) Neither for % = 0 nor for % = −2 the class of all DAEs (14) (with arbitrary λ2
n) has

a uniform perturbation index.

Proof: If |λ2
n − 4| ≥ ∆λ then α ≥ −α0 with a constant α0 that is independent of λn

but depends on ∆λ. Following standard perturbation index theory estimate (2) with m = 1

is proved ( C0 = O(eα0t) and lim
∆λ→0

C0 =∞ ). In the stripe {λn : |λ2
n − 4| ≤ ∆λ } the

way in that errors are propagated depends on the sign of α (and thus on %, see Fig. 1): if

α > 0 the results of Sections 2 and 3 can be applied to prove the uniform error estimate (12)

with m = 2 , in the case α < 0 there is no estimate (12) at all since C0 = O(e−αt) and

α→ −∞ . �

Söderlind [11] points out that DAEs of the form (14) with λ2
n = 4 are not isolated higher-

index problems that are difficult to solve numerically but these problems separate a class of

index-1 DAEs that are in the limit case λ2
n → 4 very similar to index-2 DAEs from another

class of index-1 DAEs that exhibit an essential instability. This statement is carried over

straightforwardly to partial DAEs (13) if the length L of the domain is such that the index

of the partial DAE is 2.

Remarks 3 a) For the partial DAE (13) we consider the set of all DAEs (14) and for the

semi-discretized DAEs the set of all DAEs (16), the dimension of U(t), V (t) varies with N .

Uniform error estimates make sense only, if the norms in (12) are compatible for varying

N . Throughout this we use the L2–norm on [0, L] in the partial DAE case and the discrete

analogue ‖U‖2,N :=
(

1
N

∑N
i=1(UN

i )2
)1/2

for the semi-discretized DAEs, i. e.

‖U(t)‖ =
( 1

N

N∑
i=1

U2
i (t)

)1/2

, ‖V (t)‖ =
( 1

N

N∑
i=1

V 2
i (t)

)1/2

.

b) Because of limN→∞ Λi = λi Lemma 2a proves that for a given partial DAE (13) of index

1 with % ∈ {0,−2} the class of all (sufficiently fine) finite difference approximations (15)

has uniform perturbation index 1.

c) If the partial DAE (13) has index 2 (i. e. 2L
π
∈ N ) then the class of all (sufficiently fine)

finite difference approximations (15) has either uniform perturbation index 2 (if % = −2 , see

Lemma 2c) or no uniform perturbation index at all (if % = 0 , see Lemma 2d). This follows

from limN→∞ Λi = λi and Λi < λi , (i = 1, . . . , N), see also the asterisks for N = 6 in

Fig. 1. If % = 0 and λ2
n = 4 then errors in (16) may be amplified by exp(3(N+1

L
)2t)

since Λ2
n = ( 2

h
sinh)2 = 4(1− 1

3
h2) +O(h4) .
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5 Summary

Classes of DAEs may consist of DAEs that all have perturbation index 1 but a (in some

sense well-defined) limit is of higher index. We illustrated with 2 examples that the numeri-

cal solution of such index-1 DAEs may cause problems that are typical of higher index DAEs.

Furthermore, the error bounds from standard perturbation index theory do not give useful

information about the sensitivity of the solution w. r. t. perturbations. The uniform pertur-

bation index describes for DAEs close to the higher index DAE the influence of perturbations

on the solution correctly.

In the case of partial DAEs with an index that depends on the domain the existence of

a uniform perturbation index can not be guaranteed. In one example the analysis of an

index-2 partial DAE results in an (ordinary) index-2 DAE that separates a class of DAEs

with uniform perturbation index 2 from a class of DAEs that has no uniform perturbation

index at all. The same phenomenon is found analysing the sensitivity of the solutions of the

semi-discretized systems w. r. t. small perturbations.
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