Bemerkung 3.19 und Satz 3.20

Randpunkte des Gitters: $r \in \{M_1 + 1, ..., M\}$,

randnahe Punkte:
$$r\in\{1,\ldots,M_1\}$$
 mit $\sum_{s=1}^{M_1}(A_h)_{rs}>0$, randferne Punkte: $r\in\{1,\ldots,M_1\}$ mit $\sum_{s=1}^{M_1}(A_h)_{rs}=0$.

randferne Punkte:
$$r \in \{1, ..., M_1\}$$
 mit $\sum_{s=1}^{M_1} (A_h)_{rs} = 0$

Satz 3.20: Diskretes Maximumprinzip: Der allgemeine Fall.

Gegeben sei ein Problem (3.9) mit $(f_h)_r \leq 0$, $(r = 1, ..., M_1)$.

a) Ist (3.10) erfüllt und nimmt $\underline{\tilde{u}}_h := \left(\frac{\underline{u}_h}{\underline{\hat{u}}_h}\right)$ ein nichtnegatives Maximum in $(\underline{u}_h)_{r_0}$ mit einem $r_0 \in \{1,\ldots,M_1\}$ an, dann sind alle Komponenten von $\underline{\tilde{u}}_h$ gleich. Insbesondere gilt:

$$\max_{r \in \{1, \dots, M\}} (\underline{\tilde{u}}_h)_r \leq \max \left\{ 0, \max_{r \in \{M_1 + 1, \dots, M\}} (\underline{\tilde{u}}_h)_r \right\}.$$

b) Ist (3.10)* erfüllt, so gilt stets

$$\max_{r \in \{1,...,M\}} (\underline{\tilde{u}}_h)_r \leq \max_{r \in \{M_1+1,...,M\}} (\underline{\tilde{u}}_h)_r.$$

