Fehlerschranke hängt linear ab von $\max_{i,k} |l_{ik}|$. Spaltenpivotisierung: $|l_{ik}| \leq 1 \quad \rightsquigarrow$ kleine Fehlerschranke Numerische Stabilität: numerische Lösung \tilde{x} erfüllt

$$(A + \delta_A)\tilde{x} = b$$

mit

$$\frac{\|\delta_A\|_{\infty}}{\|A\|_{\infty}} \leq 8n^3 \cdot \frac{\max_{i,j,k} |a_{ij}^{(k)}|}{\max_{i,j} |a_{ij}|} \varepsilon.$$

4 Interpolation (II)

Bemerkung 4.1 (Stückweise Hermite–Interpolation)

geg.: r + 1 Stützstellen x_0, x_1, \ldots, x_r Stützwerte (y_k, y'_k) , $(k = 0, 1, \ldots, r)$

Definiert man die interpolierende Funktion Φ stückweise durch Hermite–Interpolationspolynome $\Phi|_{[x_{i-1},x_i]}$, (i = 1, ..., r) mit Interpolationsbedingungen

$$\Phi(x_{i-1}) = y_{i-1}, \quad \Phi'(x_{i-1}) = y'_{i-1}, \quad \Phi(x_i) = y_i, \quad \Phi'(x_i) = y'_i, \quad (i = 1, \dots, r)$$

so ist $\Phi \in C^1[a, b]$, aber $\deg \Phi|_{[x_{i-1}, x_i]} \leq 3$.

4.1 Spline–Interpolation

Bemerkung 4.2 (Kubische Spline–Interpolation)

Kubische Splines erreichen ähnlich wie zusammengesetzte Hermite–Interpolierende eine hohe globale Glattheit, jedoch mit deutlich niedrigerem Polynomgrad:

$$s \in C^{2}[a, b], \ s \Big|_{[x_{i}, x_{i+1}]} \in \Pi_{3}.$$

Splines der Ordnung k: $s \in C^{k-2}[a, b], s|_{[x_i, x_{i+1}]} \in \Pi_{k-1}.$

Splinegitter $a = x_0 < x_1 < \ldots < x_n = b$.

Zum kubischen Spline s ist

$$s\big|_{[x_i,x_{i+1}]} = a_i + b_i(x - x_i) + \frac{c_i}{2}(x - x_i)^2 + \frac{d_i}{6}(x - x_i)^3, \quad (i = 0, 1, \dots, n-1)$$

 \Rightarrow insgesamt 4n Parameter $(a_i, b_i, c_i, d_i), (i = 0, 1, \dots, n-1).$

 $n + 1 \text{ Interpolations beding ungen} \quad s(x_i) = y_i \implies a_i = y_i, \ (i = 0, 1, \dots, n-1),$ $s(x_n) = y_n \implies a_{n-1} + b_{n-1}(x_n - x_{n-1}) + \frac{c_{n-1}}{2}(x_n - x_{n-1})^2 + \frac{d_{n-1}}{6}(x_n - x_{n-1})^3 = y_n =: a_n.$

3(n-1) Stetigkeitsbedingungen

$$s(x_{i+1}-0) = s(x_{i+1}+0) : \qquad a_i + b_i h_i + \frac{c_i}{2} h_i^2 + \frac{d_i}{6} h_i^3 = a_{i+1}, \quad (i = 0, 1, \dots, n-2)$$

$$s'(x_{i+1}-0) = s'(x_{i+1}+0) : \qquad b_i + c_i h_i + \frac{d_i}{2} h_i^2 = b_{i+1}, \quad (i = 0, 1, \dots, n-2)$$

$$s''(x_{i+1}-0) = s''(x_{i+1}+0) : \qquad c_i + d_i h_i = c_{i+1}, \quad (i = 0, 1, \dots, n-2)$$

mit Schrittweiten $h_i := x_{i+1} - x_i, \quad (i = 0, 1, \dots, n-1).$

 \Rightarrow insgesamt 4n-2 lineare Bedingungen an 4n Parameter

Zusatzbedingungen

(i) $s''(x_0) = s''(x_n) = 0$... natürlicher kubischer Spline oder (ii) $s'(x_0) = y'_0, \ s'(x_n) = y_n$... vollständiger kubischer Spline oder (iii) $s'(x_0) = s'(x_n), \ s''(x_0) = s''(x_n)$... periodischer kubischer Spline, für periodische Daten ($y_0 = y_n$) $\Rightarrow \ s(x_0) = s(x_n)$.

In jedem der drei Fälle ist die Splinefunktion eindeutig bestimmt.

Berechnung der Koeffizienten

$$d_{i} = \frac{c_{i+1} - c_{i}}{h_{i}},$$

$$b_{i} = \frac{a_{i+1} - a_{i}}{h_{i}} - \frac{c_{i}}{2}h_{i} - \frac{d_{i}}{6}h_{i}^{2} = \frac{y_{i+1} - y_{i}}{h_{i}} - \frac{2c_{i} + c_{i+1}}{6}h_{i}$$

Stetigkeitsbedingung für $s'(x) \Rightarrow (i = 0, 1, ..., n - 2)$

$$\frac{y_{i+1} - y_i}{h_i} - \frac{2c_i + c_{i+1}}{6}h_i + c_ih_i + \frac{c_{i+1} - c_i}{2}h_i = \frac{y_{i+2} - y_{i+1}}{h_{i+1}} - \frac{2c_{i+1} + c_{i+2}}{6}h_{i+1}$$
$$\frac{h_i}{6}c_i + \frac{h_i + h_{i+1}}{3}c_{i+1} + \frac{h_{i+1}}{6}c_{i+2} = \frac{y_{i+2} - y_{i+1}}{h_{i+1}} - \frac{y_{i+1} - y_i}{h_i}$$

Zusammen mit $c_0 = c_n = 0$ ergibt sich für den natürlichen kubischen Spline ein tridiagonales lineares Gleichungssystem der Dimension n-1 zur Bestimmung von c_1, \ldots, c_{n-1} \Rightarrow Gaußscher Algorithmus erfordert $\mathcal{O}(n)$ Rechenoperationen. Analoges Vorgehen für vollständigen und periodischen Spline.

Algorithmus 1 Bestimmung der Splinekoeffizienten.

- 1. $a_i := y_i$, (i = 0, 1, ..., n 1)
- 2. Berechne c_0, c_1, \ldots, c_n als Lösung eines tridiagonalen Gleichungssystems.
- 3. Bestimme $b_i, d_i, (i = 0, 1, ..., n 1)$.

Algorithmus 2 Auswertung der Splinefunktion.

1. Bestimme Teilintervall (binäre Suche)

$$\begin{array}{l} \underline{i} := 0 \,, \ \overline{i} := n \\ \texttt{repeat} \\ \\ \left| \begin{array}{l} i_* := \left[\begin{array}{c} \underline{i} + \overline{i} \\ 2 \end{array} \right] \\ \texttt{if} \ x \ge x_{i_*} \ \texttt{then} \ \underline{i} := i_* \ \texttt{else} \ \overline{i} := i_* \\ \texttt{until} \ \overline{i} - \underline{i} \le 1 \end{array} \right| \\ i := \underline{i} \end{array}$$

Einfachster Spezialfall: äquidistantes Gitter $x_i = a + ih$ mit $h = \frac{b-a}{n}$ $\Rightarrow i := \left[\frac{x-a}{h}\right]$ 2. Splineauswertung $s(x) = a_i + (x - x_i)\left(b_i + (x - x_i)\left(\frac{1}{2}c_i + \frac{1}{6}d_i(x - x_i)\right)\right)$

Bemerkung 4.3 (B–Splines)

Idee Darstellung der Splinefunktion als Linearkombination "einfacher" Basisfunktionen des Vektorraums der Splinefunktionen \rightsquigarrow B-Splines.

Beispiel k = 2: stetige, stückweise lineare Funktion

$$B_{j}(x) = \begin{cases} \frac{x - x_{j}}{x_{j+1} - x_{j}}, & (x \in [x_{j}, x_{j+1}]), \\ \frac{x - x_{j+2}}{x_{j+1} - x_{j+2}}, & (x \in [x_{j+1}, x_{j+2}]), \\ 0 & \text{sonst.} \end{cases}$$

Interpolierender linearer Spline $s(x) = \sum_{j=0}^{n} y_j B_{j-1}(x)$.

allgemein • $B_j |_{[x_i, x_{i+1}]} \in \Pi_{k-1}$, (i = 0, 1, ..., n-1)• $B_j \in C^{k-2}[a, b]$

- $\sum_{j} B_j(x) = 1$, $(x \in [a, b])$
- supp $B_j = [x_j, x_{j+k}]$, d. h. $B_j(x) = 0$, $(x \le x_j \text{ oder } x \ge x_{j+k})$

Beispiel Kubischer B–Spline

Bestimmung der Koeffizienten α_j des interpolierenden Splines $\sum_j \alpha_j B_j(x)$ als Lösung eines linearen Gleichungssystems der Bandbreite k - 1.

Satz 4.4 (Approximationseigenschaften kubischer Splines)

Gegeben sei eine Funktion $f \in C^4[a, b]$ mit $\max_{a \le x \le b} |f^{(4)}(x)| \le M$ sowie ein Gitter

 $\Delta = \{ a = x_0 < x_1 < \ldots < x_n = b \}$

mit Schrittweiten $h_i := x_{i+1} - x_i$, (i = 0, 1, ..., n-1) und einer Konstanten

$$K \ge \max_{0 \le i \le n-1} h_i / \min_{0 \le i \le n-1} h_i$$

Dann gibt es zum vollständigen interpolierenden kubischen Spline s_{Δ} Konstanten C_0, C_1, C_2 und C_3 , die von Δ und K unabhängig sind und für die gilt

$$|f^{(k)}(x) - s^{(k)}_{\Delta}(x)| \le C_k M K \left(\max_{0 \le i \le n-1} h_i\right)^{4-k}, \ (x \in [a, b], \ k = 0, 1, 2, 3)$$

in jedem Punkt x, in dem $s_{\Delta}^{(k)}(x)$ definiert ist.

Beweisidee (i) $f(x_i) = s_{\Delta}(x_i)$ für Stützstellen x_i

(ii) Abschätzung von $|f''(x_i) - s''_{\Delta}(x_i)|$ durch Einsetzen von f in das Gleichungssystem aus Bemerkung 4.2

(iii) Hieraus Abschätzungen für $x \neq x_i$.

Bemerkung 4.5 (Bernstein-Polynome und Bezier-Kurven)

a) Bernstein–Polynome

$$B_i^{(n)}(x) = \binom{n}{i} (1-x)^{n-i} x^i, \ (i = 0, 1, \dots, n)$$

Eigenschaften

a) *i*-fache Nullstelle x = 0, (n - i)-fache Nullstelle x = 1

b)
$$B_i^{(n)}\Big|_{[0,1]} \ge 0$$

c) $\sum_{i=0}^n B_i^{(n)}(x) = \sum_{i=0}^n \binom{n}{i} (1-x)^{n-i} x^i = ((1-x)+x)^n = 1$
d) $B_i^{(n)}(x) = x \cdot B_{i-1}^{(n-1)}(x) - B_i^{(n-1)}(x)$

b) Bezier-Kurve

geg.: Kontrollpunkte $b_0, b_1, \ldots, b_n \in \mathbb{R}^k$

Bezierkurve im \mathbb{R}^k : $\sum_{i=0}^n b_i B_i^{(n)}(x)$, $(x \in [0,1])$.

- Anfangspunkt b_0 , Endpunkt b_n
- Tangente in b_0 verläuft durch b_1 , denn

$$\frac{\mathrm{d}}{\mathrm{d}x}B_0^{(n)}(0) = -n \,, \quad \frac{\mathrm{d}}{\mathrm{d}x}B_1^{(n)}(0) = n \,, \quad \frac{\mathrm{d}}{\mathrm{d}x}B_i^{(n)}(0) = 0 \,, \ (i > 1)$$

- n = 2: Tangenten in b_0 und b_2 schneiden sich in b_1
- Kurve verläuft in der konvexen Hülle des von den b_i gebildeten Polygons \Rightarrow keine unerwünschten Oszillationen

4.2 Trigonometrische Interpolation – Schnelle Fouriertransformation

Bemerkung 4.6 (Problemstellung)

Interpolation periodischer Daten durch trigonometrische Polynome.

N = 2n + 1 ungerade

$$T_R^N := \{ \phi_{2n+1}(t) := \frac{a_0}{2} + \sum_{j=1}^n (a_j \cos jt + b_j \sin jt) \text{ mit } a_j, b_j \in \mathbb{R}, (j = 0, \dots, n) \}$$

N = 2n gerade

$$T_R^N := \{ \phi_{2n}(t) := \frac{a_0}{2} + \sum_{j=1}^{n-1} (a_j \cos jt + b_j \sin jt) + \frac{a_n}{2} \cos nt \text{ mit } a_j, b_j \in \mathbb{R}, (j = 0, \dots, n) \}$$

Komplexe Darstellung

$$T_C^N := \{ \phi_N(t) := \sum_{j=0}^{N-1} c_j e^{ijt} : c_j \in \mathbb{C}, (j = 0, \dots, N-1) \}$$

Ansatzfunktionen $\{1, \cos jt, \sin jt\}$ bzw. $\{e^{ijt} : 0 \le j \le N-1\}$ sind linear unabhängig \rightsquigarrow Interpolationsaufgabe zu N Stützpunkten $(t_k, f_k), (k = 0, 1, \ldots, N-1)$ eindeutig lösbar.

Typische Aufgabenstellung Digitale Signalverarbeitung, Datenerfassung im festen Takt \Rightarrow äquidistante Knoten, normiert auf $t_k = k \cdot 2\pi/N$.

Bemerkung 4.7 (Trigonometrische Interpolation auf äquidistantem Gitter) Zu $t_k = k \cdot 2\pi/N$, (k = 0, 1, ..., N - 1) sind $\omega_k := e^{it_k} = e^{ik \cdot 2\pi/N}$ die N-ten Einheitswurzeln.

Interpolations bedingungen $\phi_N(t_k) = f_k$, (k = 0, 1, ..., N - 1) bestimmen ϕ_N mit

$$\begin{pmatrix} 1 & \omega_0 & \omega_0^2 & \cdots & \omega_0^{N-1} \\ 1 & \omega_1 & \omega_1^2 & \cdots & \omega_1^{N-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \omega_{N-1} & \omega_{N-1}^2 & \cdots & \omega_{N-1}^{N-1} \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \\ \vdots \\ c_{N-1} \end{pmatrix} = \begin{pmatrix} f_0 \\ f_1 \\ \vdots \\ f_{N-1} \end{pmatrix}.$$

Bemerkung 4.8 (Komplexe und reelle trigonometrische Polynome)

Gilt für das (komplexe) trigonometrische Polynom

$$\phi_N(t) = \sum_{j=0}^{N-1} c_j \mathrm{e}^{ijt}$$

 $\phi_N(t) \in \mathbb{R}, (t \in \mathbb{R}), \text{ so gilt } \phi_N \in T_R^N \text{ mit}$

$$a_j = 2 \operatorname{Re} c_j = c_j + c_{N-j}, \quad b_j = -2 \operatorname{Im} c_j = i (c_j - c_{N-j}).$$

Beweis Für die N äquidistanten Knoten $t_k = k \cdot 2\pi/N$, (k = 0, 1, ..., N - 1) gilt

$$e^{-ijt_k} = \underbrace{e^{iNk \cdot 2\pi/N}}_{= 1} \cdot e^{-ijt_k} = e^{i(N-j)t}$$

und

$$\sum_{j=0}^{N-1} c_j e^{ijt_k} = \phi_N(t_k) = \overline{\phi_N(t_k)} = \sum_{j=0}^{N-1} \overline{c_j} e^{-ijt_k} = \sum_{j=0}^{N-1} \overline{c_j} e^{i(N-j)t_k} = \sum_{l=1}^N \overline{c_{N-l}} e^{ilt_k}$$

Abbildung 4.1: Zusammenhang zwischen komplexer und reeller Darstellung des trigonometrischen Interpolationspolynoms.

⇒ $c_j = \overline{c_{N-j}}$, da Interpolationsaufgabe eindeutig lösbar. Wegen $e^{i \cdot 0 \cdot t_k} = e^{i \cdot N \cdot t_k} = 1$ ist insbesondere $c_0 = \overline{c_0}$, also $c_0 \in \mathbb{R}$. Ebenso folgt $c_n \in \mathbb{R}$ für gerade N = 2n. Sei nun N = 2n + 1, so ist

$$\phi_N(t_k) = c_0 + \sum_{j=1}^{2n} c_j e^{ijt_k} = c_0 + \sum_{j=1}^n c_j e^{ijt_k} + \sum_{l=1}^n c_{N-l} e^{i(N-l)t_k}$$

= $c_0 + \sum_{j=1}^n (c_j e^{ijt_k} + \overline{c_j} e^{-ijt_k})$
= $c_0 + 2\sum_{j=1}^n \operatorname{Re}(c_j e^{ijt_k}) = c_0 + 2\sum_{j=1}^n (\operatorname{Re}c_j \cdot \cos jt_k - \operatorname{Im}c_j \cdot \sin jt_k).$

Wegen der Eindeutigkeit des trigonometrischen Interpolationspolynoms folgt die Behauptung durch Koeffizientenvergleich. Analog für gerade N = 2n.

Satz 4.9 (Lösung der trigonometrischen Interpolationsaufgabe)

Für äquidistante Stützstellen $t_k = k \cdot 2\pi/N$, (k = 0, 1, ..., N - 1) ist die Lösung der trigonometrischen Interpolationsaufgabe

$$\phi_N(t_k) = f_k$$
, $(k = 0, 1, \dots, N-1)$

gegeben durch

$$\phi_N(t) = \sum_{j=0}^{N-1} c_j e^{ijt} \quad mit \quad c_j := \frac{1}{N} \sum_{k=0}^{N-1} f_k \omega_k^{-j}, \quad (j = 0, 1, \dots, N-1).$$

Beweis Wegen der Eindeutigkeit des trigonometrischen Interpolationspolynoms reicht es aus, für l = 0, 1, ..., N - 1 zu zeigen

$$f_l \stackrel{!}{=} \sum_{j=0}^{N-1} \underbrace{\left(\frac{1}{N} \sum_{k=0}^{N-1} f_k \omega_k^{-j}\right)}_{= c_j} e^{ijt_l} = \sum_{k=0}^{N-1} f_k \cdot \frac{1}{N} \sum_{j=0}^{N-1} \omega_k^{-j} \omega_l^j.$$

Nun ist

$$\sum_{j=0}^{N-1} \omega_k^{-j} \omega_l^j = \sum_{j=0}^{N-1} \omega_{l-k}^j = \begin{cases} N & \text{falls } k = l, \\ 0 & \text{sonst}, \end{cases}$$

denn

$$\frac{\omega_{l-k}-1}{\omega_{l-k}-1} \cdot \sum_{j=0}^{N-1} \omega_{l-k}^{j} = \frac{1}{\omega_{l-k}-1} \sum_{j=0}^{N-1} (\omega_{l-k}^{j+1}-\omega_{l-k}^{j}) = \frac{\omega_{l-k}^{N}-1}{\omega_{l-k}-1} = 0,$$

falls $l \neq k$, denn ω_{l-k} ist N-te Einheitswurzel. Hieraus folgt die Behauptung.

Bemerkung 4.10 (Diskrete Fourier-Transformation)

Für 2π -periodische Funktionen $f \in L^2(\mathbb{R})$ erhält man mit den Fourierkoeffizienten

$$\hat{f}(j) := \frac{1}{2\pi} \int_0^{2\pi} f(t) \mathrm{e}^{-ijt} \,\mathrm{d}t \,, \ (j \in \mathbb{Z})$$

die abgebrochenen Fourier-Reihen

$$f_n(t) := \sum_{j=-n}^n \hat{f}(j) \mathrm{e}^{ijt} \,.$$

Setzt man für ${\cal N}=2n+1$

$$c_{-j} := c_{N-j}, \ (j = 1, \dots, n),$$

so ist

$$\phi_N(t_k) = \sum_{j=0}^{N-1} c_j e^{ijt_k} = \sum_{j=0}^n c_j e^{ijt_k} + \sum_{j=n+1}^{N-1} c_j e^{ijt_k}$$
$$= \sum_{j=0}^n c_j e^{ijt_k} + \sum_{l=1}^n c_{N-l} e^{i(N-l)t_k} = \sum_{j=0}^n c_j e^{ijt_k} + \sum_{l=1}^n c_{-l} e^{i\cdot(-l)\cdot t_k} = \sum_{j=-n}^n c_j e^{ijt_k}.$$

Abbildung 4.2: Zusammenhang zwischen diskreter und kontinuierlicher Fouriertransformation.

Approximiert man

0

t₁

2π

t_2

so ergibt sich

$$\hat{f}(j) \approx \frac{1}{N} \sum_{k=0}^{N-1} f(t_k) e^{-ijt_k} = \frac{1}{N} \sum_{k=0}^{N-1} f_k \omega_k^{-j} = c_j.$$

Wegen der Analogie zur klassischen kontinuierlichen Fourier–Transformation heißt die Abbildung

$$\mathcal{F}_N : \mathbb{C}^N \to \mathbb{C}^N, \ \left(f_k\right)_{k=0}^{N-1} \mapsto \left(c_j\right)_{j=0}^{N-1}$$

aus Satz 4.9 Diskrete Fourier-Transformation (DFT) und die Umkehrabbildung

$$\mathcal{F}_N^{-1}$$
: $(c_j)_j \mapsto (f_k)_k$, $f_k := \sum_{j=0}^{N-1} c_j \omega_j^k$, $(k = 0, 1, \dots, N-1)$

(Fourier-)Synthese oder Inverse diskrete Fourier-Transformation (IDFT).

Abbildung 4.3: Anwendung der DFT in der Signalverarbeitung: Ausgangsdaten.

Abbildung 4.4: Anwendung der DFT in der Signalverarbeitung: $f_{\rm max} = 2.0 \, {\rm Hz}$.

Abbildung 4.5: Anwendung der DFT in der Signalverarbeitung: $f_{\text{max}} = 1.0 \,\text{Hz}$.

Abbildung 4.6: Anwendung der DFT in der Signalverarbeitung: $f_{\rm max} = 5.0\,{\rm Hz}\,.$

Abbildung 4.7: Anwendung der DFT in der Signalverarbeitung: $f_{\text{max}} = 0.5 \,\text{Hz}$.

Beispiel 4.11 (Tiefpassfilter)

Anwendung der DFT in der Signalverarbeitung

Elimination hochfrequenter Anteile im Signal, die häufig durch Messfehler verfälscht ("Messrauschen") und darüberhinaus für die praktische Anwendung oft nicht relevant sind \Rightarrow "*Tiefpassfilter*".

praktisch Berücksichtige in $\phi_N(t)$ nur die Terme $a_j \cos jt$ und $b_j \sin jt$, die zu den ersten $j_{\max} \ll n$ Frequenzen gehören (j_{\max} ist vom Anwender vorzugeben). Für N = 2n + 1 erhält man

$$\tilde{f}_k := c_0 + \sum_{j=1}^{j_{\max}} c_j \omega_j^k + \sum_{j=1}^{j_{\max}} c_{N-j} \omega_{N-j}^k = c_0 + \sum_{j=1}^{j_{\max}} (c_j \omega_j^k + c_{N-j} \overline{\omega_j}^k), \quad (k = 0, 1, \dots, N-1).$$

Beispiel Rauigkeit einer Feldoberfläche

(Originaldaten von Prof. Dr.-Ing. P. Pickel, Institut für Agrartechnik und Landeskultur). Die Messdaten für die Höhe u(x) einer Feldoberfläche am Ort x liegen im Abstand von $\Delta_x = 0.05 \text{ m}$ vor (Abb. 4.3). Bei konstanter Fahrgeschwindigkeit v = 2.0 m/s entspricht dies einer Frequenz von 1/(0.05 m/2.0 m/s) = 40 Hz. Abb. 4.4 – Abb. 4.7 zeigen für verschiedene maximale Frequenzen f_{max} den Vergleich zwischen gefilterten Daten und Originaldaten. Die Elimination der hochfrequenten Anteile in u(t) ist deutlich erkennbar.

Bemerkung 4.12 (Schnelle Fourier-Transformation)

engl.: Fast Fourier Transform(ation) (FFT)

Problem Standard-Algorithmus zur Auswertung von \mathcal{F}_N oder \mathcal{F}_N^{-1} würde $\mathcal{O}(N^2)$ Rechenoperationen erfordern (Matrix-Vektor-Multiplikation).

Cooley–Tuckey (1965) Sei N = 2M gerade und $\omega = e^{i\frac{2\pi}{N}}$ oder $\omega = e^{-i\frac{2\pi}{N}}$. Dann gilt für

$$\alpha_j = \sum_{k=0}^{N-1} f_k \omega^{kj}, \quad (j = 0, 1, \dots, N-1)$$
$$\alpha_{2l} = \sum_{k=0}^{M-1} g_k \xi^{kl}, \quad \alpha_{2l+1} = \sum_{k=0}^{M-1} h_k \xi^{kl}, \quad (l = 0, 1, \dots, M-1)$$

mit $M := N/2, \ \xi := \omega^2$ und

$$g_k := f_k + f_{k+M}, \quad h_k := (f_k - f_{k+M}) \,\omega^k.$$

Mit 2*M* Additionen und 2*M* Multiplikationen ($\omega^k \to \omega^{k+1} = \omega \cdot \omega^k$, $h_k = (...) \cdot \omega^k$) wird die Berechnung von *N* Summen der Länge *N* zurückgeführt auf 2*M* = *N* Summen der Länge M = N/2.

Beweis

$$\alpha_{2l} = \sum_{k=0}^{N-1} f_k \omega^{k \cdot 2l} = \sum_{k=0}^{\frac{N}{2}-1} \left(f_k \omega^{2kl} + f_{k+\frac{N}{2}} \omega^{2(k+\frac{N}{2})l} \right) = \sum_{k=0}^{M-1} (f_k + f_{k+M}) \omega^{2kl}$$

$$\alpha_{2l+1} = \sum_{k=0}^{N-1} f_k \omega^{(2l+1)k} = \sum_{k=0}^{\frac{N}{2}-1} \left(f_k \omega^{2kl+k} + f_{k+\frac{N}{2}} \omega^{(2l+1)(k+\frac{N}{2})} \right) = \sum_{k=0}^{M-1} (f_k - f_{k+\frac{N}{2}}) \omega^k \cdot \omega^{2kl}$$

Rekursive Anwendung besonders einfach für $N = 2^p \Rightarrow$ Aufwand zur Berechnung von $\alpha_0, \alpha_1, \ldots, \alpha_{N-1}$ (Analyse oder Synthese) beträgt $2N \log_2 N$ Multiplikationen.

Algorithmus 4.13 (Schnelle Fourier–Transformation) Sei $N = 2^p$ und $\omega = e^{i\frac{2\pi}{N}}$ oder $\omega = e^{-i\frac{2\pi}{N}}$.

Eingabe: $f_0, f_1, \dots, f_{N-1} \in \mathbb{C}$ **Ausgabe:** $\alpha_0, \alpha_1, \dots, \alpha_{N-1} \in \mathbb{C}$ mit $\alpha_j := \sum_{k=0}^{N-1} f_k \omega^{kj}$.

$$\begin{array}{l} N_{\rm red} := N \; ; \; \; z := \omega \\ \\ \text{while} \; \; N_{\rm red} > 1 \; \mathrm{do} \\ & M_{\rm red} := N_{\rm red}/2 \\ \text{for} \; \; j = 0 : (N/N_{\rm red} - 1) \\ & | \; l := jN_{\rm red} \\ \text{for} \; \; k = 0 : M_{\rm red} - 1 \\ & | \; a := f_{l+k} + f_{l+k+M_{\rm red}} \\ & f_{l+k+M_{\rm red}} := (f_{l+k} - f_{l+k+M_{\rm red}}) z^k \\ & | \; f_{l+k} := a \\ & N_{\rm red} := M_{\rm red} \; ; \; \; z := z^2 \\ \\ \\ \text{for} \; \; k = 0 : N - 1 \\ & | \; \alpha_{\sigma(k)} := f_k \end{array}$$

Vertauschung der Komponenten von α bestimmt durch Permutation $\sigma(k)$:

$$\sigma\left(\sum_{j=0}^{N-1} a_j 2^j\right) := \sum_{j=0}^{N-1} a_{N-j} 2^j \text{ mit } a_0, a_1, \dots, a_{N-1} \in \{0, 1\}.$$

 \rightsquigarrow "bit reversal", einfache Implementierung durch Bitmanipulationen

- Typisches Beispiel eines "divide-and-conquer"-Algorithmus,
- gut parallelisierbar,
- in Signalprozessoren hardwaremäßig verfügbar.

5 Quadratur

Bemerkung 5.1 (Problemstellung)

geg.: stückweise stetige Funktion $f : [a, b] \to \mathbb{R}$ ges.: $I(f) := I_a^b(f) := \int_a^b f(x) \, \mathrm{d}x$

Eigenschaften

- a) Linearität: $I(\alpha f + \beta g) = \alpha I(f) + \beta I(g)$
- b) Positivität: $f(x) \ge 0$, $(x \in [a, b]) \Rightarrow I(f) \ge 0$
- c) Additivität: $I_a^b(f) = I_a^c(f) + I_c^b(f)$, $(c \in (a, b))$

 $\mathbf{Spezialfall} \quad \widetilde{f}(x) = x^k \;\; \Rightarrow \;\; I^b_a(\widetilde{f}) = \int_a^b x^k \,\mathrm{d}x = \frac{1}{k+1} \left. x^{k+1} \right|_a^b$