## **Definition 3.7: Vektornorm**

Eine Abbildung  $\|.\|:\mathbb{R}^n\to\mathbb{R}$  heißt Vektornorm auf  $\mathbb{R}^n$ , falls

- 1. (i)  $||x|| \ge 0$ ,  $(x \in \mathbb{R}^n)$ , (ii)  $||x|| = 0 \Leftrightarrow x = 0$  (Positivität)
- 2.  $\|\alpha x\| = |\alpha| \cdot \|x\|$ ,  $(\alpha \in \mathbb{R}, x \in \mathbb{R}^n)$  (Homogenität)
- 3.  $||x + y|| \le ||x|| + ||y||$ ,  $(x, y \in \mathbb{R}^n)$  (Dreiecks-ungleichung)

## Bemerkung

Jedes Skalarprodukt <.,.> in  $\mathbb{R}^n$  erzeugt eine Vektornorm in  $\mathbb{R}^n$ :

$$||x|| := \sqrt{\langle x, x \rangle}$$
.

Es gilt die Cauchy-Schwarzsche Ungleichung

$$|\langle x, y \rangle| \le ||x|| \cdot ||y||, \ (x, y \in \mathbb{R}^n).$$

