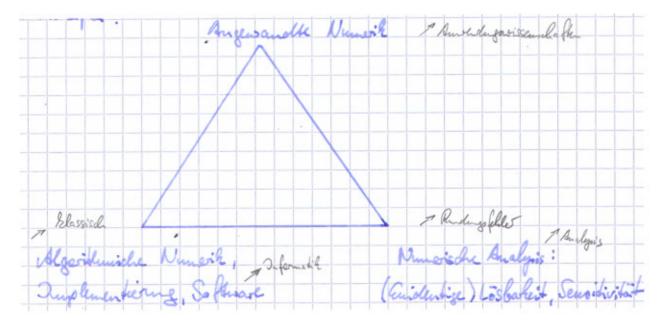
1 Einführung

1.1 Grundlagen

Bemerkung 1.1 (Numerische Mathematik)

- a) Im engeren Sinn: zahlenmäßige Auswertung mathematischer Zusammenhänge
 - z. B. Lösung von linearen und nichtlinearen Gleichungssystemen
 - Numerische Integration und Differentiation
 - Näherungsweise Auswertung reeller Funktionen
 - Numerische Lösung von Differentialgleichungen
 - Numerische Lösung von Optimierungsproblemen
- b) **Typisches Ziel:** Näherungen für die exakte Lösung eines mathematischen Problems, deren Fehler beliebig klein gemacht werden kann und für die verlässliche Fehlerschranken vorliegen.
- c) **praktisch:** wesentliche Komponente des Wissenschaftlichen Rechnens (engl.: scientific computing): Computersimulation auf der Grundlage mathematischer Modelle in den Anwendungswissenschaften: Naturwissenschaften, Ingenieurwissenschaften, Medizin, Wirtschaftswissenschaften.



Bemerkung 1.2 (Entwicklung der Rechentechnik)

- Entwicklung der Numerik untrennbar verknüpft mit Entwicklung der Rechentechnik
- Grundlagen: verstärkt ab 18. Jahrhundert

Abbildung 1.1: Klassische Rechentechnik.

Abbildung 1.2: Moderner Hochleistungsrechner am LRZ München.

- 1941 Z3 (K. Zuse)
 - 1946 ENIAC (J. v. Neumann)
 - 1958 erster Mikrochip
 - 1967 erster Taschenrechner
 - 1976 Home-Computer "Apple"
 - 1981 erster Personal Computer (PC)
 - heute: leistungsfähige Arbeitsplatzrechner (PC, Workstation)

Vektor- und Parallelrechner für High performance computing

• seit 1971: Anzahl der elementaren Transistorfunktionen je Sekunde verdoppelt sich etwa nach jeweils 18 Monaten

Bemerkung 1.3 (Literatur)

- [1] Th. Huckle and S. Schneider. *Numerik für Informatiker*. Springer-Verlag, Berlin, 2002.
- [2] J. Stoer. Numerische Mathematik 1. Springer-Verlag, Berlin Heidelberg New York, 8th edition, 1999.
- [3] J. Stoer and R. Bulirsch. *Numerische Mathematik 2.* Springer-Verlag, Berlin Heidelberg New York, 4th edition, 2000.
- [4] P. Deuflhard and A. Hohmann. Numerische Mathematik I. Eine algorithmisch orientierte Einführung. Walter de Gruyter, Berlin New York, 3rd edition, 2002.
- [5] A. Quarteroni, R. Sacco, and F. Saleri. *Numerische Mathematik 1*. Springer-Verlag, Berlin, 2002.
- [6] A. Quarteroni, R. Sacco, and F. Saleri. *Numerische Mathematik 2*. Springer-Verlag, Berlin, 2002.
- [7] G.H. Golub and Ch.F. van Loan. *Matrix Computations*. The Johns Hopkins University Press, Baltimore London, 3rd edition, 1996.

1.2 Klassische Polynominterpolation

Bemerkung 1.4 (Problemstellung)

geg.: n+1 Stützpunkte (x_j, y_j) , (j = 0, 1, ..., n) mit Stützstellen x_j und Stützwerten y_j , zwischen denen ein (oft auch nur vermuteter) funktionaler Zusammenhang besteht: $y_j = f(x_j)$, (j = 0, 1, ..., n). Praktisch oft: Messdaten y_j

ges.: Polynom $\Phi^{(n)}(x)$ höchstens n-ten Grades, das die n+1 Interpolationsbedingungen

$$y_j = \Phi^{(n)}(x_j), \quad (j = 0, 1, \dots, n)$$

erfüllt.

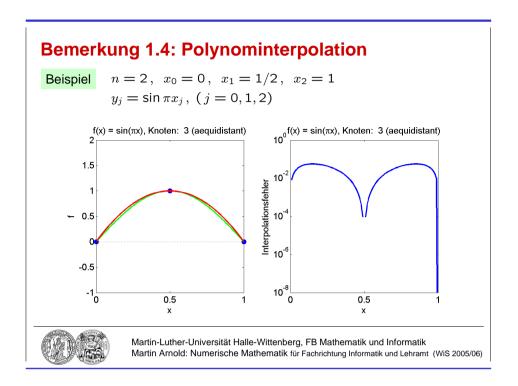


Abbildung 1.3: Interpolationspolynom $\Phi^{(2)}(x)$ zu $f(x) = \sin \pi x$, $(x \in [0, 1])$.

Beispiel Tabellierte Daten, z. B.

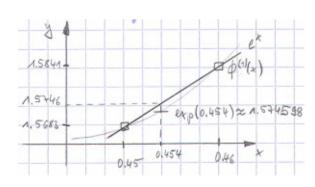
$$n = 1, f(x) = e^x, x_0 = 0.45, x_1 = 0.46, y_0 = 1.5683 \approx \exp(0.45), y_1 = 1.5841 \approx \exp(0.46)$$

Lineare Interpolation

$$\exp(x) \approx \Phi^{(1)}(x) = 1.5683 + \frac{x - 0.45}{0.46 - 0.45} (1.5841 - 1.5683)$$

Beispiel

$$\Phi^{(1)}(0.454) = 1.5746$$



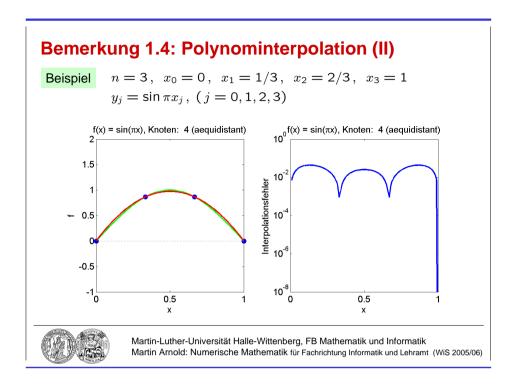


Abbildung 1.4: Interpolationspolynom $\Phi^{(3)}(x)$ zu $f(x) = \sin \pi x$, $(x \in [0, 1])$.

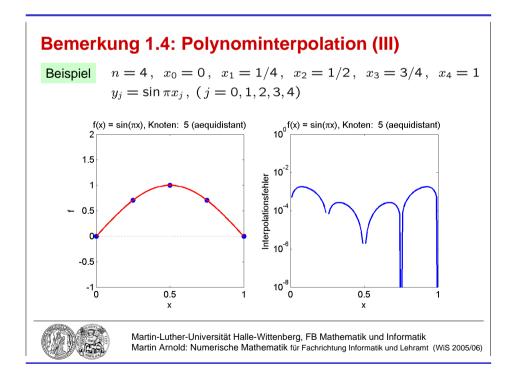


Abbildung 1.5: Interpolationspolynom $\Phi^{(4)}(x)$ zu $f(x) = \sin \pi x$, $(x \in [0, 1])$.

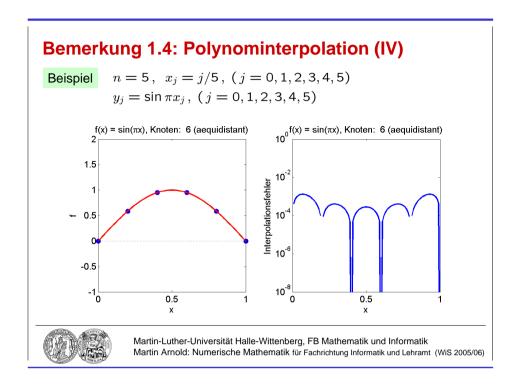


Abbildung 1.6: Interpolationspolynom $\Phi^{(5)}(x)$ zu $f(x) = \sin \pi x$, $(x \in [0, 1])$.

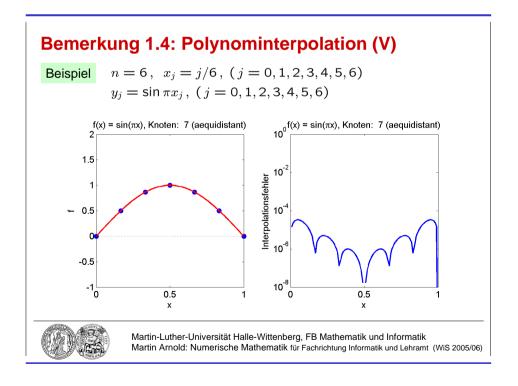


Abbildung 1.7: Interpolationspolynom $\Phi^{(6)}(x)$ zu $f(x) = \sin \pi x$, $(x \in [0, 1])$.

Bemerkung 1.5 (Eindeutigkeit des Interpolationspolynoms)

Sind die Stützstellen x_0, x_1, \ldots, x_n paarweise voneinander verschieden, so ist das Interpolationspolynom $\Phi^{(n)}(x)$ aus Bemerkung 1.4 eindeutig bestimmt, denn gilt für zwei Polynome $\Phi_1^{(n)}, \Phi_2^{(n)} \in \Pi_n$

$$\Phi_1^{(n)}(x_j) = \Phi_2^{(n)}(x_j) = y_j, \quad (j = 0, 1, \dots, n),$$

so ist $\Phi_1^{(n)} - \Phi_2^{(n)} \in \Pi_n$ ein Polynom mit den n+1 Nullstellen $x_0, x_1, \dots, x_n \Rightarrow \Phi_1^{(n)} - \Phi_2^{(n)} = 0$ (Fundamentalsatz der Algebra), $\Phi_1^{(n)}(x) \equiv \Phi_2^{(n)}(x)$.

Bemerkung 1.6 (Elementarer Zugang)

Sei $\Phi^{(n)}(x) = \sum_{i=0}^{n} a_i x^i$ mit den zunächst unbekannten Koeffizienten a_0, a_1, \dots, a_n . Die

Interpolationsbedingungen $y_j = \Phi^{(n)}(x_j)$, (j = 0, 1, ..., n) sind äquivalent zu dem linearen Gleichungssystem

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 1 & x_1 & x_1^2 & \cdots & x_1^n \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^n \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}$$

Lösung mit dem Gaußschen Algorithmus, vgl. Abschnitt 2.1.

Ziel: Transformation in ein äquivalentes lineares Gleichungssystem mit Dreiecksgestalt

Schritt 1 Addiere Vielfache der 1. Zeile zu Zeilen $2, \ldots, n+1$ so, dass in der 1. Spalte alle Elemente unterhalb der Hauptdiagonale verschwinden:

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \cdots & x_0^n \\ 0 & x_1 - x_0 & x_1^2 - x_0^2 & \cdots & x_1^n - x_0^n \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & x_n - x_0 & x_n^2 - x_0^2 & \cdots & x_n^n - x_0^n \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 - y_0 \\ \vdots \\ y_n - y_0 \end{pmatrix}$$

Rechenaufwand: $\approx n^2$ Rechenoperationen zur Transformation von n Zeilen mit je n Spalten

Schritt k Addiere Vielfache der k-ten Zeile zu Zeilen $k+1,\ldots,n+1$ so, dass in der k-ten Spalte alle Elemente unterhalb der Hauptdiagonale verschwinden.

Rechenaufwand: $\approx (n+1-k)^2$ Rechenoperationen zur Transformation von n+1-k Zeilen mit je n+1-k Spalten

gesamt n Gaußschritte mit insgesamt

$$\sum_{k=1}^{n} (n+1-k)^2 = \sum_{l=1}^{n} l^2 = \frac{n(n+1)(2n+1)}{6}$$

Rechenoperationen.

Ergebnis: Rechenaufwand $\frac{n^3}{3} + \mathcal{O}(n^2)$ Rechenoperationen, wächst kubisch mit n.

Bemerkung 1.7 (Landau-Symbole)

Sei $x_0 \in \mathbb{R}$ und $g: I \to \mathbb{R}$ in einer Umgebung von x_0 definiert. Gibt es für ein $p \in \mathbb{R}$, $p \geq 0$ eine positive Konstante $\bar{c} \in \mathbb{R}$, so dass für alle x in einer hinreichend kleinen Umgebung von x_0 die Abschätzung

$$|g(x)| \le \bar{c} \cdot |x - x_0|^p$$

erfüllt ist, so schreibt man

$$g(x) = \mathcal{O}((x - x_0)^p), (x \to x_0)$$

sprich: "g(x) ist groß O von $(x-x_0)^p$ ".

Beispiel $\sin x = \mathcal{O}(x), (x \to 0)$

Existiert $\lim_{x\to x_0} \frac{g(x)}{(x-x_0)^p}$ und ist $\lim_{x\to x_0} \frac{g(x)}{(x-x_0)^p} = 0$, so schreibt man

$$g(x) = o((x - x_0)^p), (x \to x_0)$$

sprich: "klein o".

Beispiel $\sqrt{x}^3 = o(x), (x \to 0)$

Entsprechend bedeutet

$$v(n) = \mathcal{O}(n^p)$$
, $(n \to \infty)$

für eine Funktion $v: \mathbb{N} \to \mathbb{R}$, dass für alle $n \geq n_0$ die Abschätzung $|v(n)| \leq \bar{c}n^p$ mit einer gewissen positiven Konstanten $\bar{c} \in \mathbb{R}$ erfüllt ist, und

$$v(n) = o(n^p), (n \to \infty)$$

steht für

$$\lim_{n \to \infty} \frac{v(n)}{n^p} = 0.$$

Beispiel $v(n) = \frac{n(n+1)(2n+1)}{6}$

Es gilt $v(n) < n \cdot 2n \cdot 3n / 6 = n^3$, also $v(n) = \mathcal{O}(n^3)$. Genauer gilt $v(n) = n^3/3 + w(n)$ mit $w(n) = \frac{1}{2}n^2 + \frac{1}{6}n = \mathcal{O}(n^2)$, man schreibt kurz: $v(n) = n^3/3$.

Bemerkung 1.8 (Klassische Polynominterpolation: Lagrange–Darstellung)

Elementarer Zugang aus Bemerkung 1.6 \Rightarrow Interpolationspolynom $\Phi^{(n)}$ in monomialer Basis $\{1, x, x^2, \dots, x^n\}$:

$$\Phi^{(n)}(x) = \sum_{j=0}^{n} a_j x^j$$

Lagrange-Darstellung

$$\Phi^{(n)}(x) = \sum_{j=0}^{n} y_j L_j^{(n)}(x)$$

mit den Lagrangeschen Basispolynomen

$$L_j^{(n)}(x) := \prod_{\substack{i=0\\i\neq j}}^n \frac{x-x_i}{x_j-x_i} = \frac{(x-x_0)(x-x_1)\cdots(x-x_{i-1})(x-x_{i+1})\cdots(x-x_n)}{(x_j-x_0)(x_j-x_1)\cdots(x_j-x_{i-1})(x_j-x_{i+1})\cdots(x_j-x_n)},$$

die die Interpolationsbedingungen

$$L_j(x_k) = \delta_{kj} = \begin{cases} 1 & \text{falls } k = j, \\ 0 & \text{sonst,} \end{cases} \quad (k = 0, 1, \dots, n)$$

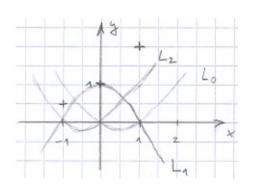
erfüllen.

Beispiel n=2, $x_0=-1$, $x_1=0$, $x_2=1$

$$L_0^{(2)}(x) = \frac{(x-0)(x-1)}{(-1-0)(-1-1)}$$

$$L_1^{(2)}(x) = \frac{(x+1)(x-1)}{(0+1)(0-1)}$$

$$L_2^{(2)}(x) = \frac{(x+1)(x-0)}{(1+1)(1-0)}$$



Bemerkung 1.9 (Horner–Schema)

Auswertung des Interpolationspolynoms mit $\mathcal{O}(n)$ Rechenoperationen:

$$\Phi^{(n)}(x) = \sum_{j=0}^{n} a_j x^j = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
$$= a_0 + x \left(a_1 + x \left(a_2 + \dots + x \left(a_{n-1} + x a_n \right) \dots \right) \right)$$

Horner-Schema

Beispiel Auswertung von $\Phi(x) = (x-1)^3 = x^3 - 3x^2 + 3x - 1$ and der Stelle x = 5:

Algorithmus

$$\begin{aligned} p &:= a_n \\ &\text{for } i = n : -1 : 1 \\ &\mid p := a_{i-1} + x * p \end{aligned}$$

Matlab-Code Speicherschema für Vektoren in Matlab $(a_0, a_1, \dots, a_n) = \mathtt{a(1:(n+1))}$

Bemerkung 1.10 (Rekursive Auswertung des Interpolationspolynoms)

Sei $\Phi_{i,\dots,i+l} \in \Pi_l$ das Interpolationspolynom zu Stützpunkten

$$(x_k, y_k)$$
, $(k = i, i + 1, ..., i + l)$.

Dann gilt

$$\Phi_{i+1,\dots,i+l}(x_k) = y_k, \quad (k = i+1,\dots,i+l),
\Phi_{i,\dots,i+l-1}(x_k) = y_k, \quad (k = i,\dots,i+l-1),$$

also

$$\Phi_{i,\dots,i+l}(x) = \frac{(x-x_i)\Phi_{i+1,\dots,i+l}(x) - (x-x_{i+l})\Phi_{i,\dots,i+l-1}(x)}{x_{i+l} - x_i},$$
 (*)

denn der rechts stehende Ausdruck erfüllt $\Phi_{i,\dots,i+l}(x_k) = y_k$ für k = i, für k = i+l und für $k = i+1,\dots,i+l-1$.

Neville-Schema

Beispiel 1.11 (Polynominterpolation: Neville-Schema)

Idee Approximiere $\sqrt{2} = 2^{1/2}$ durch $\Phi(1/2)$ mit dem Interpolationspolynom $\Phi \in \Pi_2$ zu (-1, 1/2), (0, 1) und (1, 2).

Lagrange-Darstellung

$$\Phi(\frac{1}{2}) = \sum_{j=0}^{2} y_j L_j^{(2)}(\frac{1}{2}) = \frac{1}{2} \cdot L_0^{(2)}(\frac{1}{2}) + 1 \cdot L_1^{(2)}(\frac{1}{2}) + 2 \cdot L_2^{(2)}(\frac{1}{2})$$

mit den Lagrangeschen Basispolynomen $L_j^{(2)}(x)$ aus Bemerkung 1.8.

Neville

Bemerkung 1.12 (Klassische Polynominterpolation: Newton-Darstellung)

Problem Neville–Schema erfordert $\mathcal{O}(n^2)$ Rechenoperationen, ebenso die Auswertung von $\sum_i y_i L_i^{(n)}(x)$, aber

$$\sum_{j=0}^{n} a_j x^j = a_0 + x \left(a_1 + x \left(a_2 + \ldots + x \left(a_{n-1} + x a_n \right) \cdots \right) \right)$$

kann mit $\mathcal{O}(n)$ Rechenoperationen ausgewertet werden.

gesucht Darstellung des Interpolationspolynoms, die man effizient bestimmen kann und die mit Horner-artigem Schema ausgewertet werden kann.

Ansatz Es gilt

$$\Phi_{i,i+1,\dots,i+l}(x) = \Phi_{i,i+1,\dots,i+l-1}(x) + (x-x_i)(x-x_{i+1}) \cdots (x-x_{i+l-1}) f_{i,i+1,\dots,i+l}(x)$$

mit einem $f_{i,i+1,\dots,i+l} \in \mathbb{R}$, denn

$$\Phi_{i,i+1,\dots,i+l}(x_k) = \Phi_{i,i+1,\dots,i+l-1}(x_k), \quad (k=i,i+1,\dots,i+l-1).$$

Durch Vergleich der Koeffizienten von x^l in (*) aus Bemerkung 1.10 folgt

$$f_{i,i+1,\dots,i+l} = \frac{f_{i+1,\dots,i+l} - f_{i,\dots,i+l-1}}{x_{i+l} - x_i}$$
.

Für $f_k = f(x_k)$ bezeichnet man diese dividierten Differenzen mit $f[x_i, \dots, x_{i+l}]$. Rekursive Berechnung mittels Steigungsschema

$$l = 0 l = 1 l = 2 ... l = n$$

$$x_0 f[x_0] = f_0 f[x_0, x_1] = \frac{f_1 - f_0}{x_1 - x_0} f[x_0, x_1, x_2]$$

$$x_1 f_1 f[x_1, x_2] = \frac{f_2 - f_1}{x_2 - x_1} \vdots ... f[x_0, ..., x_n]$$

$$\vdots \vdots ... f_n$$

mit

$$f[x_0, x_1, x_2] = \frac{f_2 - f_1}{x_2 - x_1} - \frac{f_1 - f_0}{x_1 - x_0}, \dots$$

Newtonsche Darstellung

$$\Phi(x) = f[x_0] + (x - x_0) f[x_0, x_1] + (x - x_0)(x - x_1) f[x_0, x_1, x_2] + \dots + (x - x_0)(x - x_1) \cdots (x - x_{n-1}) f[x_0, x_1, \dots, x_n]$$

Newton-Horner-Schema

$$\Phi(x) = f[x_0] + (x - x_0) (f[x_0, x_1] + (x - x_1) (f[x_0, x_1, x_2] + \dots + (x - x_{n-2}) (f[x_0, x_1, \dots, x_{n-1}] + (x - x_{n-1}) f[x_0, x_1, \dots, x_n]) \cdots))$$

Beispiel vgl. Beispiel 1.11

$$\Phi(x) = \frac{1}{2} + (x - (-1)) \cdot \frac{1}{2} + (x - (-1)) (x - 0) \cdot \frac{1}{4} = \frac{1}{2} + (x + 1) \cdot (\frac{1}{2} + x \cdot \frac{1}{4})$$

$$\Phi(\frac{1}{2}) = \frac{1}{2} + (\frac{1}{2} + 1) \cdot (\frac{1}{2} + \frac{1}{2} \cdot \frac{1}{4}) = \frac{1}{2} + \frac{3}{2} \cdot \frac{5}{8} = \frac{23}{16}$$

Algorithmen

Steigungsschema

$$\begin{array}{c|c} \text{for } i=n:-1:0 \\ & a_i:=f_i \\ & \text{for } j=i+1:n \\ & a_j:=\frac{a_j-a_{j-1}}{x_j-x_i} \end{array}$$

Newton-Horner-Schema

$$egin{aligned} p &:= a_n \ & ext{for}\ i &= n-1:-1:0 \ & ext{} \ p &:= a_i + (x-x_i)\,p \end{aligned}$$

Satz 1.13 (Restglied der Polynominterpolation)

Sei $f \in C^{n+1}[a,b]$ und Φ das Interpolationspolynom zu den Stützstellen

$$a \le x_0 < x_1 < \ldots < x_n \le b,$$

d. h. $\Phi(x_k) = f(x_k)$, (k = 0, 1, ..., n). Dann gibt es zu jedem $\bar{x} \in [a, b]$ ein $\xi \in [a, b]$ mit

$$f(\bar{x}) - \Phi(\bar{x}) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (\bar{x} - x_0)(\bar{x} - x_1) \cdots (\bar{x} - x_n).$$

Beweis Die Behauptung ist trivial für $x = x_k$, (k = 0, 1, ..., n).

Andernfalls betrachtet man

$$g(x) := f(x) - \Phi(x) - K(x - x_0)(x - x_1) \cdots (x - x_n)$$

mit

$$K := \frac{f(\bar{x}) - \Phi(\bar{x})}{(\bar{x} - x_0)(\bar{x} - x_1) \cdots (\bar{x} - x_n)}.$$

Die Funktion g hat in [a, b] (mindestens) n+2 Nullstellen: $x_0, x_1, \ldots, x_n, \bar{x}$. Nach dem Satz von Rolle hat g' mindestens n+1 Nullstellen usw. und schließlich $g^{(n+1)}(x)$ mindestens eine Nullstelle $\xi \in [a, b]$. Wegen

$$0 = g^{(n+1)}(\xi)$$

$$= f^{(n+1)}(\xi) - \underbrace{\frac{\mathrm{d}^{n+1}\Phi(x)}{\mathrm{d}x^{n+1}}}\Big|_{x=\xi} - K \cdot \frac{\mathrm{d}^{n+1}}{\mathrm{d}x^{n+1}} \Big((x-x_0)(x-x_1) \cdots (x-x_n) \Big) \Big|_{x=\xi}$$

$$= 0, \ \mathrm{da} \ \Phi \in \Pi_n$$

$$= f^{(n+1)}(\xi) - K \cdot (n+1)!$$

folgt schließlich $K = \frac{f^{(n+1)}(\xi)}{(n+1)!}$ und hieraus die Behauptung.

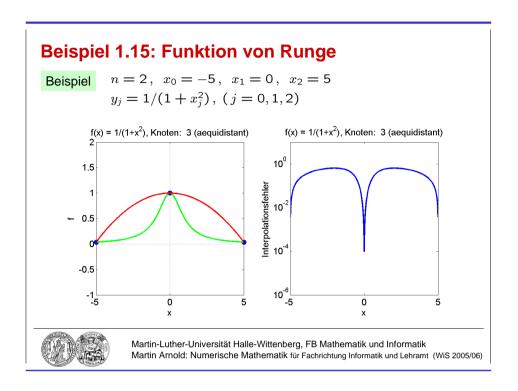


Abbildung 1.8: Interpolation der Funktion von Runge: $\Phi^{(2)}(x)$, Stützstellen äquidistant.

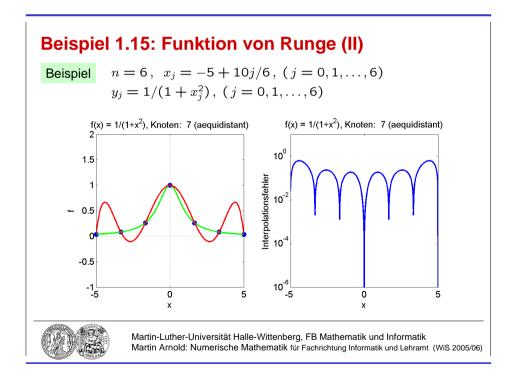


Abbildung 1.9: Interpolation der Funktion von Runge: $\Phi^{(6)}(x)$, Stützstellen äquidistant.

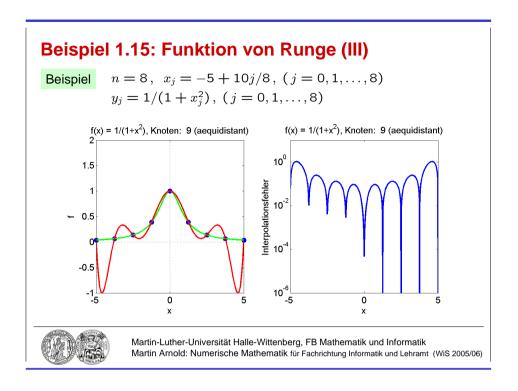


Abbildung 1.10: Interpolation der Funktion von Runge: $\Phi^{(8)}(x)$, Stützstellen äquidistant.

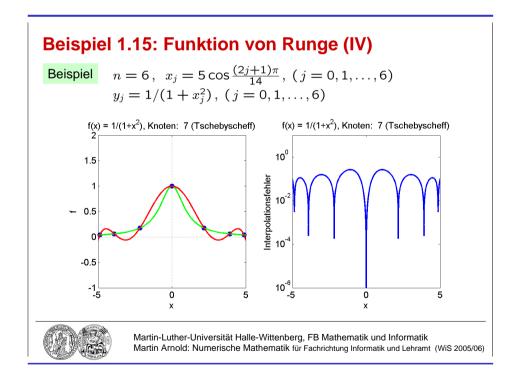


Abbildung 1.11: Interpolation der Funktion von Runge: $\Phi^{(6)}(x)$, Tschebyscheff–Stützstellen.

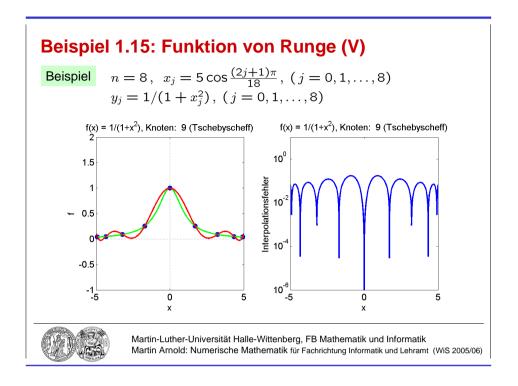


Abbildung 1.12: Interpolation der Funktion von Runge: $\Phi^{(8)}(x)$, Tschebyscheff–Stützstellen

Bemerkung 1.14 (Wahl der Stützstellen)

a) Nach Satz 1.13 sollte man die Stützstellen möglichst so wählen, dass

$$\max_{x \in [a,b]} |(x-x_0)(x-x_1)\cdots(x-x_n)| \to \min$$

Typische Stützstellen:

- äquidistant: $x_j := a + jh$, Schrittweite $h := \frac{b-a}{n}$
- Tschebyscheff–Nullstellen: [a, b] = [-1, 1]

$$x_j := \cos \frac{(2j+1)\pi}{2n+2}$$
, $(j=0,1,\ldots,n)$

- b) Zu jeder Folge von Stützstellen lässt sich ein $f \in C[a, b]$ angeben, so dass die zugehörige Folge der Interpolationspolynome nicht gleichmäßig konvergiert (Satz von Faber).
- c) Praktische Erfahrung: Polynome hohen Grades neigen zu Oszillationen und sollten vermieden werden.

Beispiel 1.15 (Funktion von Runge)

Äquidistante Stützstellen sind ungeeignet zur Interpolation der Funktion von Runge

$$f(x) = \frac{1}{1+x^2}, (x \in [-5, 5])$$

(vgl. Abb. 1.8, 1.9 und 1.10). Bessere Ergebnisse für Tschebyscheff-Stützstellen (vgl. Abb. 1.11 und 1.12).

Bemerkung 1.16 (Hermite-Interpolation)

Klassische Polynominterpolation Bestimme zu gegebenen Stützstellen x_j und gegebenen Stützwerten y_j ein Polynom $\Phi \in \Pi_n$, das die n+1 Interpolationsbedingungen

$$\Phi(x_j) = y_j$$
, $(j = 0, 1, ..., n)$

erfüllt.

(Klassische) Hermite-Interpolation Bestimme zu gegebenen Stützstellen x_j und gegebenen Stützwerten (y_j, y_j') ein Polynom $\Phi \in \Pi_{2n+1}$, das die 2(n+1) Interpolationsbedingungen

$$\Phi(x_j) = y_j, \quad \Phi'(x_j) = y'_j, \quad (j = 0, 1, \dots, n)$$

erfüllt.

Newtonsche Darstellung Füge die Stützpunkte (x_j, y_j) , (j = 0, 1, ..., n) jeweils zweimal in das Steigungsschema ein und ersetze auftretende Quotienten "0/0" durch die vorgegebenen Funktionswerte y'_j der Ableitung $\Phi'(x)$.

Beispiel n=1

mit

$$f[x_0,x_0,x_1,x_1] := \frac{f[x_0,x_1,x_1] - f[x_0,x_0,x_1]}{x_1 - x_0}$$

Ergebnis

$$\Phi(x) = y_0 + (x - x_0) \cdot y_0' + (x - x_0)^2 \cdot f[x_0, x_0, x_1] + (x - x_0)^2 (x - x_1) \cdot f[x_0, x_0, x_1, x_1]$$

Effiziente Auswertung mit Newton-Horner-Schema.

Höhere Ableitungen Interpolationsbedingungen

$$\frac{\mathrm{d}^k \Phi}{\mathrm{d} x^k}(x_j) = y_j^{(k)}, \quad (j = 0, 1, \dots, n; \ k = 0, 1, \dots, c_j)$$

bestimmen das Hermite–Interpolationspolynom $\Phi \in \Pi_r$ mit $r+1 = \sum_{j=0}^n (1+c_j)$.