Satz 5.9: Konvergenz von Iterationsverfahren

Satz von Stein und Rosenberg

Die Iterationsmatrizen von Jacobi- und Gauß-Seidel-Verfahren sind gegeben durch $B_J = D^{-1}(E+F)$ bzw. $B_{GS} = (D-E)^{-1}F$. Sind sämtliche Elemente der Matrix $B_{\rm J}$ nichtnegativ, so gilt genau eine der folgenden Beziehungen:

(i)
$$\varrho(B_{\rm GS}) = \varrho(B_{\rm J}) = 0$$
, (iii) $\varrho(B_{\rm GS}) = \varrho(B_{\rm J}) = 1$,

(iii)
$$\varrho(B_{\mathsf{GS}}) = \varrho(B_{\mathsf{J}}) = 1$$
,

(ii)
$$0 < \varrho(B_{\mathsf{GS}}) < \varrho(B_{\mathsf{J}}) < 1$$
, (iv) $\varrho(B_{\mathsf{GS}}) > \varrho(B_{\mathsf{J}}) > 1$.

(iv)
$$\varrho(B_{\mathsf{GS}}) > \varrho(B_{\mathsf{J}}) > 1$$
.

Satz von Kahan

Für die Iterationsmatrix

$$B_{\mathsf{SOR}}(\omega) = (I - \omega D^{-1}E)^{-1} \left((1 - \omega)I + \omega D^{-1}F \right)$$

des SOR-Verfahrens gilt $\varrho(B_{\mathsf{SOR}}(\omega)) \geq |\omega - 1|$ für alle $\omega \in \mathbb{R}$.

