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Abstract. In this paper we investigate quasilinear parabolic systems of con-
served Penrose-Fife type. We show maximal Lp - regularity for this problem
with inhomogeneous boundary data. Furthermore we prove global existence
of a solution, provided that the absolute temperature is bounded from below
and above. Moreover, we apply the Lojasiewicz-Simon inequality to establish
the convergence of solutions to a steady state as time tends to infinity.
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1. Introduction and the Model

We are interested in the conserved Penrose-Fife type equations

∂tψ = ∆µ, µ = −∆ψ + Φ′(ψ)− λ′(ψ)ϑ, t ∈ J, x ∈ Ω,

∂t (b(ϑ) + λ(ψ))−∆ϑ = 0, t ∈ J, x ∈ Ω,
(1.1)

where ϑ = 1/θ and θ denotes the absolute temperature of the system, ψ is the
order parameter and Ω ⊂ Rn is a bounded domain with boundary ∂Ω ∈ C4.
The function Φ′ is the derivative of the physical potential, which characterizes
the different phases of the system. A typical example is the double well potential
Φ(s) = (s2 − 1)2 with the two distinct minima s = ±1. Typically, the nonlinear
function λ is a polynomial of second order.

For an explanation of (1.1) we will follow the lines of Alt & Pawlow [2] (see
also Brokate & Sprekels [4, Section 4.4]). We start with the rescaled Landau-
Ginzburg functional (total Helmholtz free energy)

F(ψ, θ) =
∫

Ω

(
γ(θ)
2θ

|∇ψ|2 +
f(ψ, θ)
θ

)
dx,
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where the free energy density F (ψ, θ) := γ(θ)
2 |∇ψ|2 + f(ψ, θ) is rescaled by 1/θ.

The reduced chemical potential µ is given by the variational derivative of F with
respect to ψ, i.e.

µ =
δF
δψ

(ψ, θ) =
1
θ

(
−γ(θ)∆ψ +

∂f(ψ, θ)
∂ψ

)
.

Assuming that ψ is a conserved quantity, we have the conservation law

∂tψ + divj = 0.

Here j is the flux of the order parameter ψ, for which we choose the well accepted
constitutive law j = −∇µ, i.e. the phase transition is driven by the chemical
potential µ (see [4, (4.4)]). The kinetic equation for ψ thus reads

∂tψ = ∆µ, µ =
1
θ

(
−γ(θ)∆ψ +

∂f(ψ, θ)
∂ψ

)
.

If the volume of the system is preserved, the internal energy e is given by the
variational derivative

e =
δF(ψ, θ)
δ(1/θ)

.

This yields the expression

e(ψ, θ) = f(ψ, θ)− θ
∂f(ψ, θ)
∂θ

+
1
2

(
γ(θ)− θ

∂γ(θ)
∂θ

)
|∇ψ|2.

It can be readily checked that the Gibbs relation

e(ψ, θ) = F (ψ, θ)− θ
∂F (ψ, θ)

∂θ
.

holds. If we assume that no mechanical stresses are active, the internal energy e
satisfies the conservation law

∂te+ divq = 0,

where q denotes the heat flux of the system. Following Alt & Pawlow [2], we
assume that q = ∇

(
1
θ

)
, so that the kinetic equation for e reads

∂te+ ∆
(

1
θ

)
= 0.

Let us now assume that γ(θ) = θ and f(ψ, θ) = θΦ(ψ) − λ(ψ) − θ log θ. In this
case we obtain e = θ − λ(ψ) and

µ = −∆ψ + Φ′(ψ)− λ′(ψ)
1
θ
,

hence system (1.1) for ϑ = 1/θ and b(s) = −1/s, s > 0. Suppose (j|ν) = (q|ν) = 0
on ∂Ω with ν = ν(x) being the outer unit normal in x ∈ ∂Ω. This yields the
boundary conditions ∂νµ = 0 and ∂νϑ = 0 for the chemical potential µ and the
function ϑ, respectively. Since (1.1) is of fourth order with respect to the function ψ
we need an additional boundary condition. An appropriate and classical one from
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a variational point of view is ∂νψ = 0. Finally, this yields the initial-boundary
value problem

∂tψ −∆µ = f1, µ = −∆ψ + Φ′(ψ)− λ′(ψ)ϑ, t ∈ J, x ∈ Ω,

∂t (b(ϑ) + λ(ψ))−∆ϑ = f2, t ∈ J, x ∈ Ω,
∂νµ = g1, ∂νψ = g2, ∂νϑ = g3, t ∈ J, x ∈ ∂Ω,

ψ(0) = ψ0, ϑ(0) = ϑ0, t = 0, x ∈ Ω,

(1.2)

The functions fj , gj , ψ0, ϑ0,Φ, λ and b are given. Note that if θ has only a small
deviation from a constant value θ∗ > 0, then the term 1/θ can be linearized
around θ∗ and (1.2) turns into the nonisothermal Cahn-Hilliard equation for the
order parameter ψ and the relative temperature θ − θ∗, provided b(s) = −1/s.

In the case of the Penrose-Fife equations, Brokate & Sprekels [4] and
Zheng [18] proved global well-posedness in an L2-setting if the spatial dimension is
equal to 1. Sprekels & Zheng showed global well-posedness of the non-conserved
equations (that is ∂tψ = −µ) in higher space dimensions in [16], a similar result can
be found in the article of Laurencot [10]. Concerning asymptotic behavior we
refer to the articles of Kubo, Ito & Kenmochi [9], Shen & Zheng [15], Feireisl
& Schimperna [8] and Rocca & Schimperna [13]. The last two authors studied
well-posedness and qualitative behavior of solutions to the non-conserved Penrose-
Fife equations. To be precise, they proved that each solution converges to a steady
state, as time tends to infinity. Shen & Zheng [15] established the existence of
attractors for the non-conserved equations, whereas Kubo, Ito & Kenmochi [9]
studied the non-conserved as well as the conserved Penrose-Fife equations. Beside
the proof of global well-posedness in the sense of weak solutions they also showed
the existence of a global attractor. Finally, we want to mention that the physical
potential Φ may also be of logarithmic type, such that Φ′(s) has singularities
at s = ±1. This forces the order parameter to stay in the physically reasonable
interval (−1, 1), provided that the initial value ψ(0) = ψ0 ∈ (−1, 1). In general,
such a result cannot be obtained in the case of the double well potential, since
there is no maximum principle available for the fourth order equation (1.2)1. For
a result on global existence, uniqueness and asymptotic behaviour of solutions of
the Cahn-Hilliard equation in case of a logarithmic potential, we refer the reader
to Abels & Wilke [1]. However, in this paper we will only deal with smooth
potentials.

In the following sections we will prove well-posedness of (1.2) for solutions in
the maximal Lp-regularity classes

ψ ∈ H1
p (J ;Lp(Ω)) ∩ Lp(J ;H4

p (Ω)),

ϑ ∈ H1
p (J ;Lp(Ω)) ∩ Lp(J ;H2

p (Ω)),

where J = [0, T ], T > 0. In Section 2 we investigate a linearized version of (1.2) and
prove maximal Lp-regularity. Section 3 is devoted to local well-posedness of (1.2).
To this end we apply the contraction mapping principle. In Section 4, we show
that the solution exists globally in time, provided that the absolute temperature
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ϑ is uniformly bounded from below and above. Finally, in Section 5, we study the
asymptotic behavior of the solution to (1.2) as t → ∞. The Lojasiewicz-Simon
inequality will play an important role in the analysis.

2. The Linear Problem

In this section we deal with a linearized version of (1.2).

∂tu+ ∆2u+ ∆(η1v) = f1, t ∈ J, x ∈ Ω,
∂tv − a0∆v + η2∂tu = f2, t ∈ J, x ∈ Ω,

∂ν∆u+ ∂ν(η1v) = g1, t ∈ J, x ∈ ∂Ω,
∂νu = g2, ∂νv = g3, t ∈ J, x ∈ ∂Ω,

u(0) = u0, v(0) = v0, t = 0, x ∈ Ω.

(2.1)

Here η1 = η1(x), η2 = η2(x), a0 = a0(x) are given functions such that

η1 ∈ B4−4/p
pp (Ω), η2 ∈ B2−2/p

pp (Ω) and a0 ∈ C(Ω). (2.2)

We assume furthermore that a0(x) ≥ σ > 0 for all x ∈ Ω and some constant σ > 0.
Hence equation (2.1)2 does not degenerate. We are interested in solutions

u ∈ H1
p (J ;Lp(Ω)) ∩ Lp(J ;H4

p (Ω)) =: E1(T )

and
v ∈ H1

p (J ;Lp(Ω)) ∩ Lp(J ;H2
p (Ω)) =: E2(T )

of (2.1). By the well-known trace theorems (cf. [3, Theorem 4.10.2])

E1(T ) ↪→ C(J ;B4−4/p
pp (Ω)) and E2(T ) ↪→ C(J ;B2−2/p

pp (Ω)), (2.3)

we necessarily have u0 ∈ B
4−4/p
pp (Ω) =: X1

γ , v0 ∈ B
2−2/p
pp (Ω) =: X2

γ and the
compatibility conditions

∂ν∆u0 + ∂ν(η1v0) = g1|t=0, ∂νu0 = g2|t=0, as well as ∂νv0 = g3|t=0,

whenever p > 5, p > 5/3 and p > 3, respectively (cf. [6, Theorem 2.1]). In the
sequel we will assume that p > (n+ 2)/2 and p ≥ 2. This yields the embeddings

B4−4/p
pp (Ω) ↪→ H2

p (Ω) ∩ C1(Ω̄) and B2−2/p
pp (Ω) ↪→ H1

p (Ω) ∩ C(Ω̄).

We are going to prove the following theorem.

Theorem 2.1. Let n ∈ N, Ω ⊂ Rn a bounded domain with boundary ∂Ω ∈ C4

and let p > (n + 2)/2, p ≥ 2, p 6= 3, 5. Assume in addition that η1 ∈ B
4−4/p
pp (Ω),

η2 ∈ B
2−2/p
pp (Ω) and a0 ∈ C(Ω̄), a0(x) ≥ σ > 0 for all x ∈ Ω̄. Then the linear

problem (2.1) admits a unique solution

(u, v) ∈ H1
p (J0;Lp(Ω)2) ∩ Lp(J0; (H4

p (Ω)×H2
p (Ω))),

if and only if the data are subject to the following conditions.
1. f1, f2 ∈ Lp(J0;Lp(Ω)) = X(J0),
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2. g1 ∈W 1/4−1/4p
p (J0;Lp(∂Ω)) ∩ Lp(J0;W

1−1/p
p (∂Ω)) = Y1(J0),

3. g2 ∈W 3/4−1/4p
p (J0;Lp(∂Ω)) ∩ Lp(J0;W

3−1/p
p (∂Ω)) = Y2(J0),

4. g3 ∈W 1/2−1/2p
p (J0;Lp(∂Ω)) ∩ Lp(J0;W

1−1/p
p (∂Ω)) = Y3(J0),

5. u0 ∈ B4−4/p
pp (Ω) = X1

γ , v0 ∈ B2−2/p
pp (Ω) = X2

γ ,
6. ∂ν∆u0 + ∂ν(η1v0) = g1|t=0, p > 5,
7. ∂νu0 = g2|t=0, ∂νv0 = g3|t=0, p > 3.

Proof. Suppose that the function u ∈ E1(T ) in (2.1) is already known. Then in a
first step we will solve the linear heat equation

∂tv − a0∆v = f2 − η2∂tu, (2.4)

subject to the boundary and initial conditions ∂νv = g3 and v(0) = v0. By the
properties of the function a0 we may apply [6, Theorem 2.1] to obtain a unique
solution v ∈ E2(T ) of (2.4), provided that f2 ∈ Lp(J × Ω), v0 ∈ B2−2/p

pp (Ω),

g3 ∈W 1/2−1/2p
p (J ;Lp(∂Ω)) ∩ Lp(J ;W 1−1/p

p (∂Ω)) =: Y3(J),

and the compatibility condition ∂νv0 = g3|t=0 if p > 3 is valid. The solution may
then be represented by the variation of parameters formula

v(t) = v1(t)−
∫ t

0

e−A(t−s)η2∂tu(s) ds, (2.5)

where A denotes the Lp-realization of the differential operator A(x) = −a0(x)∆N ,
∆N means the Neumann-Laplacian and e−At stands for the bounded analytic
semigroup, which is generated by −A in Lp(Ω). Furthermore the function v1 ∈
E2(T ) solves the linear problem

∂tv1 − a0∆v1 = f2, ∂νv1 = g3, v1(0) = v0.

We fix a function w∗ ∈ E1(T ) such that w∗|t=0 = u0 and make use of (2.5) and
the fact that (u− w∗)|t=0 = 0 to obtain

v(t) = v1(t) + v2(t)− (∂t +A)−1η2∂t(u− w∗)

with v2(t) := −
∫ t

0
e−A(t−s)η2∂tw

∗. Set v∗ = v1 + v2 ∈ E2(T ) and

F (u) = −(∂t +A)−1η2∂t(u− w∗).

Then we may reduce (2.1) to the problem

∂tu+ ∆2u = ∆G(u) + f1, t ∈ J, x ∈ Ω,

∂ν∆u = ∂νG(u) + g1, t ∈ J, x ∈ ∂Ω,
∂νu = g2 t ∈ J, x ∈ ∂Ω,

u(0) = u0, t = 0, x ∈ Ω,

(2.6)

where G(u) := −η1(F (u) + v∗). For a given T ∈ (0, T0] we set

0E1(T ) = {u ∈ E1(T ) : u|t=0 = 0}
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and
E0(T ) := X(T )× Y1(T )× Y2(T )

0E0(T ) := {(f, g, h) ∈ E0(T ) : g|t=0 = h|t=0 = 0},
where X(T ) := Lp((0, T )× Ω),

Y1(T ) := W 1/4−1/4p
p (0, T ;Lp(∂Ω)) ∩ Lp(0, T ;W 1−1/p

p (∂Ω)),

and
Y2(T ) := W 3/4−1/4p

p (0, T ;Lp(∂Ω)) ∩ Lp(0, T ;W 3−1/p
p (∂Ω)).

The spaces E1(T ) and E0(T ) are endowed with the canonical norms | · |1 and | · |0,
respectively. We introduce the new function ũ := u− w∗ ∈0E1(T ) and we set

F̃ (ũ) := −(∂t +A)−1η2∂tũ

as well as G̃(ũ) := −η1F̃ (ũ). If u ∈ E1(T ) is a solution of (2.6), then the function
ũ ∈0E1(T ) solves the problem

∂tũ+ ∆2ũ = ∆G̃(ũ) + f̃1, t ∈ J, x ∈ Ω,

∂ν∆ũ = ∂νG̃(ũ) + g̃1, t ∈ J, x ∈ ∂Ω,
∂ν ũ = g̃2 t ∈ J, x ∈ ∂Ω,

ũ(0) = 0, t = 0, x ∈ Ω,

(2.7)

with the modified data

f̃1 := f1 −∆(η1v∗)− ∂tw
∗ −∆2w∗ ∈ X(T ),

g̃1 := g1 − ∂ν(ηv∗)− ∂ν∆w∗ ∈0Y1(T ),
and

g̃2 := g2 − ∂νw
∗ ∈0Y2(T ).

Observe that by construction we have g̃1|t=0 = 0 and g̃2|t=0 = 0 if p > 5 and
p > 5/3, respectively.

Let us estimate the term ∆G̃(u) in Lp(J ;Lp(Ω)), where u ∈ 0E1(T ). We
compute

|∆G̃(u)|Lp(J;Lp(Ω)) ≤ |F̃ (u)∆η1|Lp(J;Lp(Ω))

+ 2|(∇F̃ (u)|∇η1)|Lp(J;Lp(Ω)) + |η1∆F̃ (u)|Lp(J;Lp(Ω)).

Since η1 ∈ B4−4/p
pp (Ω) does not depend on the variable t, we obtain

|F̃ (u)∆η1|Lp(J;Lp(Ω)) ≤ |∆η1|Lp(Ω)|F̃ (u)|Lp(J;L∞(Ω)),

|(∇F̃ (u)|∇η1)|Lp(J;Lp(Ω)) ≤ |∇η1|L∞(Ω)|∇F̃ (u)|Lp(J;Lp(Ω)),

and
|η1∆F̃ (u)|Lp(J;Lp(Ω)) ≤ |η1|L∞(Ω)|∆F̃ (u)|Lp(J;Lp(Ω)).

Therefore we have to estimate F̃ (u) for each u ∈ 0E1(T ) in the topology of the
spaces Lp(J ;L∞(Ω)) and Lp(J ;H2

p (Ω)). Let u ∈0E1 and recall that F̃ (u) is defined
by F̃ (u) = −(∂t+A)−1η2∂tu. The operator (∂t+A)−1 is a bounded linear operator
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from Lp(J ;Lp(Ω)) to 0H
1
p (J ;Lp(Ω)) ∩ Lp(J ;H2

p (Ω)) = 0E2(T ). Moreover, by the
trace theorem and by Sobolev embedding, it holds that

0H
1
p (J ;Lp(Ω)) ∩ Lp(J ;H2

p (Ω)) ↪→ C(J ;B2−2/p
pp (Ω)) ↪→ C(J ;C(Ω̄)).

Note that the bound of (∂t + A)−1 as well as the embedding constant do not
depend on the length of the interval J = [0, T ] ⊂ [0, T0] = J0, since the time trace
at t = 0 vanishes. With these facts, we obtain

|(∂t +A)−1η2∂tu|Lp(J;L∞(Ω)) ≤ T 1/p|(∂t +A)−1η2∂tu|L∞(J;L∞(Ω))

≤ T 1/pC|(∂t +A)−1η2∂tu|E2(T )

≤ T 1/pC|η2∂tu|Lp(J;Lp(Ω))

≤ T 1/pC|η2|L∞(Ω)|u|E1(T ).

To estimate F̃ (u) in Lp(J ;H2
p (Ω)) we need another representation of F̃ (u). To be

precise, we rewrite F̃ (u) as follows

F̃ (u) = −(∂t +A)−1η2∂tu = −∂1/2
t (∂t +A)−1∂

1/2
t (η2u).

This is possible, since u ∈0E1(T ). Now observe that for each u ∈0E1 it holds that
η2u ∈0H

3/4
p (J ;H1

p (Ω)). This can be seen as follows. First of all, it suffices to show
that η2u ∈ Lp(J ;H1

p (Ω)), since η2 does not depend on the variable t. But

|η2u|Lp(J;H1
p(Ω)) ≤ |η2∇u|Lp(J;Lp(Ω)) + |u∇η2|Lp(J;Lp(Ω))

≤ C
(
|η2|L∞(Ω)|u|E1(T ) + |u|Lp(J;L∞(Ω))|η2|H1

p(Ω)

)
≤ C|u|E1(T )|η2|B2−2/p

pp (Ω)
,

and this yields the claim, since

u ∈0H
1
p (J ;Lp(Ω)) ∩ Lp(J ;H4

p (Ω)) ↪→0H
3/4
p (J ;H1

p (Ω)),

by the mixed derivative theorem. It follows readily that ∂1/2
t (η2u) ∈0H

1/4
p (J ;H1

p (Ω))
and

(∂t +A)−1(I +A)1/2∂
1/2
t (η2u) ∈0H

5/4
p (J ;Lp(Ω)) ∩0H

1/4
p (J ;H2

p (Ω)).

Since the operator (I+A)1/2 with domain D((I+A)1/2) = H1
p (Ω) commutes with

the operator (∂t +A)−1, this yields

(∂t +A)−1∂
1/2
t (η2u) ∈0H

5/4
p (J ;H1

p (Ω)) ∩0H
1/4
p (J ;H3

p (Ω))

for each fixed u ∈0E1(T ). By the mixed derivative theorem we obtain furthermore

0H
5/4
p (J ;H1

p (Ω)) ∩0H
1/4
p (J ;H3

p (Ω)) ↪→0H
3/4
p (J ;H2

p (Ω)).

Therefore

F̃ (u) = −∂1/2
t (∂t +A)−1∂

1/2
t (η2u) ∈0H

1/4
p (J ;H2

p (Ω)),
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and there exists a constant C > 0 being independent of T > 0 and u ∈ 0E1(T )
such that

|F̃ (u)|
H

1/4
p (J;H2

p(Ω))
≤ C|u|E1(T ),

for each u ∈0E1(T ). In particular this yields the estimate

|F̃ (u)|Lp(J;H2
p(Ω)) ≤ T 1/2p|F̃ (u)|L2p(J;H2

p(Ω))

≤ T 1/2p|F̃ (u)|
H

1/4
p (J;H2

p(Ω))
≤ T 1/2pC|u|E1(T ),

by Hölders inequality and C > 0 does not depend on the length T of the interval
J . We have thus shown that

|∆G̃(u)|Lp(J;Lp(Ω)) ≤ µ1(T )C|u|E1(T ),

where we have set µ1(T ) := T 1/2p(1+T 1/2p). Observe that µ1(T ) → 0+ as T → 0+.
The next step consists of estimating the term ∂νG̃(u) in 0W

1/4−1/4p
p (J ;Lp(∂Ω))∩

Lp(J ;W 1−1/p
p (∂Ω)). To this end, we recall the trace map

0H
1/2
p (J ;Lp(Ω)) ∩ Lp(J ;H2

p (Ω)) ↪→0W
1/4−1/4p
p (J ;Lp(∂Ω)) ∩ Lp(J ;W 1−1/p

p (∂Ω))

for the Neumann derivative on ∂Ω. Therefore, by the results above, it remains to
estimate G̃(u) in 0H

1/2
p (J ;Lp(Ω)). By the complex interpolation method we have

|w|
H

1/2
p (J;Lp(Ω))

≤ C|w|1/2
Lp(J;Lp(Ω))|w|

1/2
H1

p(J;Lp(Ω))

for each w ∈0H
1
p (J ;Lp(Ω)), and C > 0 does not depend on T > 0. Using Hölders

inequality, this yields

|w|
H

1/2
p (J;Lp(Ω))

≤ T 1/4pC|w|1/2
L2p(J;Lp(Ω))|w|

1/2
H1

p(J;Lp(Ω))

≤ T 1/4pC|w|H1
p(J;Lp(Ω)).

Finally we obtain the estimate

|G̃(u)|
H

1/2
p (J;Lp(Ω))

≤ T 1/2p|η1|L∞(Ω)C|u|E1(T ),

which in turn implies

|∂νG̃(u)|Y1(J) ≤ |G̃(u)|
H

1/2
p (J;Lp(Ω))

+ | ˜G(u)|Lp(J;H2
p(Ω)) ≤ µ2(T )C|u|E1(T ),

where µ2(T ) := T 1/4p(1+T 1/4p) and µ2(T ) → 0+ as T → 0+. Define two operators
L,B :0E1(T ) →0E0(T ) by means of

Lu :=

∂tu+ ∆2u
∂ν∆u
∂νu

 and Bu :=

∆G̃(u)
∂νG̃(u)

0

 .
With these definitions, we may rewrite (2.7) in the abstract form

Lu = Bu+ f, f := (f̃1, g̃1, g̃2) ∈0E0(T ).
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By [6, Theorem 2.1], the operator L is bijective with bounded inverse L−1, hence
u ∈0E1(T ) is a solution of (2.7) if and only if (I −L−1B)u = L−1f . Observe that
L−1B is a bounded linear operator from 0E1(T ) to 0E1(T ) and

|L−1Bu|E1(T ) ≤ |L−1|B(E0(T ),E1(T ))|Bu|E0(T ) ≤ (µ1(T ) + µ2(T ))C|u|E1(T ).

Here the constant C > 0 as well as the bound of L−1 are independent of T > 0.
This shows that choosing T > 0 sufficiently small, we may apply a Neumann series
argument to conclude that (2.7) has a unique solution u ∈ 0E1(T ) on a possibly
small time interval J = [0, T ]. Since the linear system (2.7) is invariant with respect
to time shifts, we may set J = J0. �

3. Local Well-Posedness

In this section we will use the following setting. For T0 > 0, to be fixed later, and
a given T ∈ (0, T0] we define

E1(T ) := E1(T )× E2(T ), 0E1(T ) := {(u, v) ∈ E1(T ) : (u, v)|t=0 = 0}
and

E0(T ) := X(T )×X(T )× Y1(T )× Y2(T )× Y3(T ),
as well as

0E0(T ) := {(f1, f2, g1, g2, g3) ∈ E0(T ) : g1|t=0 = g2|t=0 = g3|t=0 = 0},
with canonical norms | · |1 and | · |0, respectively. The aim of this section is to find
a local solution (ψ, ϑ) ∈ E1(T ) of the quasilinear system

∂tψ −∆µ = f1, µ = −∆ψ + Φ′(ψ)− λ′(ψ)ϑ, t ∈ J, x ∈ Ω,

∂t (b(ϑ) + λ(ψ))−∆ϑ = f2, t ∈ J, x ∈ Ω,
∂νµ = g1, ∂νψ = g2, ∂νϑ = g3, t ∈ J, x ∈ ∂Ω,

ψ(0) = ψ0, ϑ(0) = ϑ0, t = 0, x ∈ Ω.

(3.1)

To this end, we will apply Banach’s fixed point theorem. For this purpose let
p > (n + 2)/2, p ≥ 2, f1, f2 ∈ X(T0), gj ∈ Yj(0, T0), j = 1, 2, 3, ψ0 ∈ X1

γ and
ϑ0 ∈ X2

γ be given such that the compatibility conditions

∂ν∆ψ0−∂νΦ′(ψ0)+∂ν(λ′(ψ0)ϑ0) = −g1|t=0, ∂νψ0 = g2|t=0 and ∂νϑ0 = g3|t=0

are satisfied, whenever p > 5, p > 5/3 and p > 3, respectively. In the sequel
we will assume that λ, φ ∈ C4−(R), b ∈ C3−(0,∞) and b′(s) > 0 for all s > 0.
Note that by the Sobolev embedding theorem we have ϑ0 ∈ C(Ω̄) as well as
b′(ϑ0) ∈ C(Ω̄). Since ϑ represents the inverse absolute temperature of the system,
it is reasonable to assume ϑ0(x) > 0 for all x ∈ Ω̄. Therefore, there exists a
constant σ > 0 such that ϑ0(x), b′(ϑ0(x)) ≥ σ > 0 for all x ∈ Ω̄. We define
a0(x) := 1/b′(ϑ0(x)), η1(x) = λ′(ψ0(x)) and η2(x) = a0(x)η1(x). By assumption,
it holds that a0 ∈ B2−2/p

pp (Ω), η1 ∈ B4−4/p
pp (Ω) and η2 ∈ B2−2/p

pp (Ω), cf. [14, Section
4.6 & Section 5.3.4].
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Thanks to Theorem 2.1 we may define a pair of functions (u∗, v∗) ∈ E1(T0)
as the solution of the problem

∂tu
∗ + ∆2u∗ + ∆(η1v∗) = f1, t ∈ [0, T0], x ∈ Ω,

∂tv
∗ − a0∆v∗ + η2∂tu

∗ = a0f2, t ∈ [0, T0], x ∈ Ω,

∂ν∆u∗ + ∂ν(η1v∗) = −g1 − e−B2tg0, t ∈ [0, T0], x ∈ ∂Ω,

∂νu
∗ = g2, t ∈ [0, T0], x ∈ ∂Ω,

∂νv
∗ = g3, t ∈ [0, T0], x ∈ ∂Ω,

u∗(0) = ψ0, v
∗(0) = ϑ0, t = 0, x ∈ Ω,

(3.2)

where B = −∆∂Ω is the Laplace-Beltrami operator on ∂Ω and e−B2t is the analytic
semigroup which is generated by −B2. Furthermore g0 = 0 if p < 5 and g0 =
−g1|t=0 − (∂ν∆ψ0 + ∂ν(η1ϑ0)) if p > 5.

Define a linear operator L :0E1(T0) →0E0(T0) by

L(u, v) =


∂tu+ ∆2u+ η1∆v
∂tv − a0∆v + η2∂tu
∂ν∆u+ ∂ν(η1v)

∂νu
∂νv

 .
Then, by Theorem 2.1, the operator L : 0E1(T0) → 0E0(T0) is bounded and bijec-
tive, hence an isomorphism with bounded inverse L−1. For all (u, v) ∈ 0E1(T ) we
set

G1(u, v) = (λ′(ψ0)− λ′(u))v + Φ′(u),

G2(u, v) = (a0λ
′(ψ0)− a(v)λ′(u))∂tu− (a0 − a(v))∆v − (a0 − a(v))f2,

where a(v(t, x)) = 1/b′(v(t, x)) and a0 = a(ϑ0). Lastly we define a nonlinear
mapping G : E1(T )×0E1(T ) →0E0(T ) by

G((u∗, v∗); (u, v)) =


∆G1(u+ u∗, v + v∗)
G2(u+ u∗, v + v∗)

∂νG1(u+ u∗, v + v∗)− g̃0
0
0

 ,
where g̃0 = 0 if p < 5 and g̃0 = e−B2t∂νG1(ψ0, ϑ0) if p > 5. Then it is easy to see
that ψ = u+ u∗ ∈ E1(T ) and ϑ = v+ v∗ ∈ E2(T ) is a solution of (1.2) if and only
if

L(u, v) = G((u∗, v∗); (u, v))
or equivalently

(u, v) = L−1G((u∗, v∗); (u, v)).
In order to apply the contraction mapping principle we consider a ball BR =
B1

R × B2
R ⊂0E1(T ), where R ∈ (0, 1]. Furthermore we define a mapping T : BR →

0E1(T ) by T (u, v) = L−1G((u∗, v∗); (u, v)). We shall prove that T BR ⊂ BR and
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that T defines a strict contraction on BR. To this end we define the shifted ball
BR(u∗, v∗) = B1

R(u∗)× B2
R(v∗) ⊂ E1(T ) by

BR(u∗, v∗) = {(u, v) ∈ E1(T ) : (u, v) = (ũ, ṽ) + (u∗, v∗), (ũ, ṽ) ∈ BR}.

To ensure that the mapping G2 is well defined, we choose T0 > 0 and R > 0
sufficiently small. This yields that all functions v ∈ B2

R(v∗) have only a small
deviation from the initial value ϑ0. To see this, write

|ϑ0(x)− v(t, x)| ≤ |ϑ0(x)− v∗(t, x)|+ |v∗(t, x)− v(t, x)| ≤ µ(T ) +R,

for all functions v ∈ B2
R(v∗), where µ = µ(T ) is defined by

µ(T ) = max
(t,x)∈[0,T ]×Ω

|v∗(t, x)− ϑ0(x)|.

Observe that µ(T ) → 0 as T → 0, by the continuity of v∗ and ϑ0. This in turn
implies that v(t, x) ≥ σ/2 > 0 and b′(v(t, x)) ≥ σ/2 > 0 for (t, x) ∈ [0, T ] × Ω̄
and all v ∈ B2

R(v∗), with T0 > 0, R > 0 being sufficiently small. Moreover, for all
v, v̄ ∈ B2

R(v∗) we obtain the estimates

|a(ϑ0(x))− a(v(t, x))| ≤ C|ϑ0(x)− v(t, x)| (3.3)

and

|a(v̄(t, x))− a(v(t, x))| ≤ C|v̄(t, x)− v(t, x)|, (3.4)

valid for all (t, x) ∈ [0, T ] × Ω̄, with some constant C > 0, since b′ is locally
Lipschitz continuous.

The next proposition provides all the facts to show the desired properties of
the operator T .

Proposition 3.1. Let n ∈ N and p > (n + 2)/2, p ≥ 2, b ∈ C2−(0,∞), b′(s) > 0
for all s > 0, λ,Φ ∈ C4−(R) and ϑ0(x) > 0 for all x ∈ Ω̄. Then there exists a
constant C > 0, independent of T , and functions µj = µj(T ) with µj(T ) → 0 as
T → 0, such that for all (u, v), (ū, v̄) ∈ BR(u∗, v∗) the following statements hold.

1. |∆G1(u, v)−∆G1(ū, v̄)|X(T ) ≤ (µ1(T ) +R)|(u, v)− (ū, v̄)|E1(T ),

2. |G2(u, v)−G2(ū, v̄)|X(T ) ≤ C(µ2(T ) +R)|(u, v)− (ū, v̄)|E1(T ),

3. |∂νG1(u, v)− ∂νG1(ū, v̄)|Y1(T ) ≤ C(µ3(T ) +R)|(u, v)− (ū, v̄)|E1(T ).

The proof is given in the Appendix.

It is now easy to verify the self-mapping property of T . Let (u, v) ∈ BR. By
Proposition 3.1 there exists a function µ = µ(T ) with µ(T ) → 0 as T → 0 such
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that

|T (u, v)|1 = |L−1G((u∗, v∗), (u, v))|1 ≤ |L−1||G((u∗, v∗), (u, v))|0
≤ C(|G((u∗, v∗), (u, v))−G((u∗, v∗), (0, 0))|0 + |G((u∗, v∗), (0, 0))|0)
≤ C(|∆G1(u+ u∗, v + v∗)−∆G1(u∗, v∗)|X(T )

+ |G2(u+ u∗, v + v∗)−G2(u∗, v∗)|X(T )

+ |∂νG1(u+ u∗, v + v∗)− ∂νG1(u∗, v∗)|Y1(T )

+ |G((u∗, v∗), (0, 0))|0)
≤ C(µ(T ) +R)|(u, v)|1 + |G((u∗, v∗), (0, 0))|0
≤ C(µ(T ) +R)R+ |G((u∗, v∗), (0, 0))|0.

Hence we see that T BR ⊂ BR if T andR are sufficiently small, sinceG((u∗, v∗), (0, 0))
is a fixed function. Furthermore for all (u, v), (ū, v̄) ∈ BR we have

|T (u, v)− T (ū, v̄)|1 = |L−1(G((u∗, v∗), (u, v))−G((u∗, v∗), (ū, v̄)))|1
≤ |L−1||G((u∗, v∗), (u, v))−G((u∗, v∗), (ū, v̄))|0
≤ C(|∆G1(u+ u∗, v + v∗)−∆G1(ū+ u∗, v̄ + v∗)|X(T )

+ |∂νG1(u+ u∗, v + v∗)− ∂νG1(ū+ u∗, v̄ + v∗)|Y1(T )

+ |G2(u+ u∗, v + v∗)−G2(ū+ u∗, v̄ + v∗)|X(T ))

≤ C(µ(T ) +R)|(u, v)− (ū, v̄)|1.
Thus T is a strict contraction on BR, if T and R are again small enough. Therefore
we may apply the contraction mapping principle to obtain a unique fixed point
(ũ, ṽ) ∈ BR of T . In other words the pair (ψ, ϑ) = (ũ+ u∗, ṽ + v∗) ∈ E1(T ) is the
unique local solution of (1.2). We summarize the preceding calculations in

Theorem 3.2. Let n ∈ N, p > (n+ 2)/2, p ≥ 2, p 6= 3, 5, b ∈ C3−(0,∞), b′(s) > 0
for all s > 0 and let λ,Φ ∈ C4−(R). Then there exists an interval J = [0, T ] ⊂
[0, T0] = J0 and a unique solution (ψ, ϑ) of (1.2) on J , with

ψ ∈ H1
p (J ;Lp(Ω)) ∩ Lp(J ;H4

p (Ω))

and

ϑ ∈ H1
p (J ;Lp(Ω)) ∩ Lp(J ;H2

p (Ω)), ϑ(t, x) > 0 for all (t, x) ∈ J × Ω̄,

provided the data are subject to the following conditions.
1. f1, f2 ∈ Lp(J0 × Ω),
2. g1 ∈W 1/4−1/4p

p (J0;Lp(∂Ω)) ∩ Lp(J0;W
1−1/p
p (∂Ω)),

3. g2 ∈W 3/4−1/4p
p (J0;Lp(∂Ω)) ∩ Lp(J0;W

3−1/p
p (∂Ω)),

4. g3 ∈W 1/2−1/2p
p (J0;Lp(∂Ω)) ∩ Lp(J0;W

1−1/p
p (∂Ω)),

5. ψ0 ∈ B4−4/p
pp (Ω), ϑ0 ∈ B2−2/p

pp (Ω),
6. ∂ν∆ψ0 − ∂νΦ′(ψ0) + ∂ν(λ′(ψ0)ϑ0) = −g1|t=0, if p > 5,
7. ∂νψ0 = g2|t=0, ∂νϑ0 = g3|t=0, if p > 3,
8. ϑ0(x) > 0 for all x ∈ Ω̄.
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The solution depends continuously on the given data and if the data are inde-
pendent of t, the map (ψ0, ϑ0) 7→ (ψ, ϑ) defines a local semiflow on the natural
(nonlinear) phase manifold

Mp := {(ψ0, ϑ0) ∈ B4−4/p
pp (Ω)×B2−2/p

pp (Ω) : ψ0 and ϑ0 satisfy 6.− 8.}.

4. Global Well-Posedness

In this section we will investigate the global existence of the solution to the con-
served Penrose-Fife type system

∂tψ −∆µ = 0, µ = −∆ψ + Φ′(ψ)− λ′(ψ)ϑ, t > 0, x ∈ Ω,

∂t (b(ϑ) + λ(ψ))−∆ϑ = 0, t > 0, x ∈ Ω,
∂νµ = 0, ∂νψ = 0, ∂νϑ = 0, t > 0, x ∈ ∂Ω,

ψ(0) = ψ0, ϑ(0) = ϑ0, t = 0, x ∈ Ω,

(4.1)

with respect to time if the spatial dimension n is less or equal to 3. Note that
the boundary conditions are equivalent to ∂νϑ = ∂νψ = ∂ν∆ψ = 0. A successive
application of Theorem 3.2 yields a maximal interval of existence Jmax = [0, Tmax)
for the solution (ψ, ϑ) ∈ E1(T )×E2(T ) of (4.1), where T ∈ (0, Tmax). In the sequel
we will make use of the following assumptions.

(H1) Φ ∈ C4−(R) and there exist some constants cj > 0, γ ≥ 0 such that

Φ(s) ≥ −η
2
s2 − c1, |Φ′′′(s)| ≤ c2(1 + |s|γ),

for all s ∈ R, where η < λ1 with λ1 being the smallest nontrivial eigenvalue of
the negative Laplacian on Ω with Neumann boundary conditions and γ < 3
if n = 3.

(H2) λ ∈ C4−(R) and λ′′, λ′′′ ∈ L∞(R). In particular, there is a constant c > 0
such that |λ′(s)| ≤ c(1 + |s|) for all s ∈ R.

(H3) b ∈ C3−((0,∞)), b′(s) > 0 on (0,∞) and there is a constant κ > 1 such that

1
κ
≤ ϑ(t, x) ≤ κ

on Jmax × Ω. In particular, there exists σ > 1 such that

1
σ
≤ b′(ϑ(t, x)) ≤ σ,

on Jmax × Ω.

Remark: Condition (H1) is certainly fulfilled, if Φ is a polynomial of degree 2m,
m < 3.

We prove global well-posedness with respect to time by contradiction. For this
purpose, assume that Tmax <∞. Multiply ∂tψ = ∆µ by µ and integrate by parts
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to the result
d

dt

(
1
2
|∇ψ|22 +

∫
Ω

Φ(ψ) dx
)

+ |∇µ|22 −
∫

Ω

λ′(ψ)ϑ∂tψ dx = 0. (4.2)

Next we multiply (4.1)2 by ϑ and integrate by parts. This yields∫
Ω

ϑb′(ϑ)∂tϑ dx+ |∇ϑ|22 +
∫

Ω

λ′(ψ)ϑ∂tψ dx = 0. (4.3)

Set β′(s) = sb′(s) and add (4.2) to (4.3) to obtain the equation

d

dt

(1
2
|∇ψ|22 +

∫
Ω

Φ(ψ) dx+
∫

Ω

β(ϑ) dx
)

+ |∇µ|22 + |∇ϑ|22 = 0. (4.4)

Integrating (4.4) with respect to t, we obtain

E(ψ(t), ϑ(t)) +
∫ t

0

(
|∇µ(s)|22 + |∇ϑ(s)|22

)
dt = E(ψ0, ϑ0), (4.5)

for all t ∈ Jmax, where

E(u, v) :=
1
2
|∇u|22 +

∫
Ω

Φ(u) dx+
∫

Ω

β(v) dx.

It follows from (H1) and the Poincaré-Wirtinger inequality that

ε

2

∫
Ω

|∇ψ(t)|2 dx+
1− ε

2

∫
Ω

|∇ψ(t)|2 dx+
∫

Ω

Φ(ψ(t)) dx

≥ ε

2

∫
Ω

|∇ψ(t)|2 dx+
(1− ε)λ1 − η

2
|ψ(t)|22 − c1|Ω| −

λ1

2|Ω|

(∫
Ω

ψ0 dx

)
,

since by equation ∂tψ = ∆µ and the boundary condition ∂νµ = 0, it holds that∫
Ω

ψ(t, x) dx ≡
∫

Ω

ψ0(x) dx, t ∈ Jmax.

Hence for a sufficiently small ε > 0 we obtain the a priori estimates

ψ ∈ L∞(Jmax;H1
2 (Ω)) and |∇µ|, |∇ϑ| ∈ L2(Jmax;L2(Ω)), (4.6)

since β(ϑ(t, x)) is uniformly bounded on Jmax × Ω, by (H3). However, things are
more involved for higher order estimates. Here we have the following result.

Proposition 4.1. Let n ≤ 3, p > (n + 2)/2, p ≥ 2 and let (ψ, ϑ) be the maximal
solution of (4.1) with initial value ψ0 ∈ B4−4/p

pp (Ω) and ϑ0 ∈ B2−2/p
pp (Ω). Suppose

furthermore b ∈ C3−(0,∞), b′(s) > 0 for all s > 0, λ,Φ ∈ C4−(R) and let (H1)-
(H3) hold.

Then ψ ∈ L∞(Jmax × Ω) and ϑ ∈ H1
2 (Jmax;L2(Ω)) ∩ L∞(Jmax;H1

2 (Ω)).
Moreover, it holds that ∂tψ ∈ Lr(Jmax × Ω), where r := min{p, 2(n+ 4)/n}.

Proof. The proof is given in the Appendix.
�
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Define the new function u = b(ϑ). Then u satisfies the nonautonomous linear
differential equation in divergence form

∂tu− div(a(t, x)∇u) = f, (4.7)

subject to the boundary and initial conditions ∂νu = 0 and u(0) = b(ϑ0) =: u0,
where a(t, x) := 1/b′(ϑ(t, x)) and f := −λ′(ψ)∂tψ. With (H3), the regularity of ϑ
from Proposition 4.1 carries over to the function u; in particular u0 ∈ B2−2/p

pp (Ω).
This yields, that u is a weak solution of (4.7) in the sense of Lieberman [11] &
DiBenedetto [7], and u is bounded by (H3).

Furthermore, by (H3)

0 <
1
σ
≤ a(t, x) ≤ σ <∞,

for all (t, x) ∈ Jmax×Ω. Note that by Proposition 4.1 it holds that f = −λ′(ψ)∂tψ ∈
Lr(Jmax×Ω), r := min{p, 2(n+ 4)/n}. Consider the case r = 2(n+ 4)/n. Then it
can be readily checked that

n+ 2
2

<
2(n+ 4)

n
= r

provided n ≤ 5. It follows from Lieberman [11] & DiBenedetto [7] that there
exists a real number α ∈ (0, 1/2) such that u ∈ Cα,2α(ΩTmax), provided f ∈
Lp(Jmax × Ω) and p > (n+ 2)/2. Here Cα,2α(ΩTmax) is defined as

Cα,2α(ΩTmax) := {v ∈ C(ΩTmax) : sup
(t,x),(s,y)∈ΩTmax

|v(t, x)− v(s, y)|
|t− s|α + |x− y|2α

<∞}.

and we have set ΩTmax = (0, Tmax)×Ω. The properties of the function b then yield
that ϑ = b−1(u) ∈ Cα,2α(ΩTmax). In a next step we solve the initial-boundary
value problem

∂tϑ− a(t, x)∆ϑ = g, t ∈ Jmax, x ∈ Ω,
∂νϑ = 0, t ∈ Jmax, x ∈ ∂Ω,

ϑ(0) = ϑ0, t = 0, x ∈ Ω,
(4.8)

with g := −a(t, x)λ′(ψ)∂tψ ∈ Lr(Jmax × Ω) and r = 2(n + 4)/n > (n + 2)/2. By
[6, Theorem 2.1] we obtain

ϑ ∈ H1
r (Jmax;Lr(Ω)) ∩ Lr(Jmax;H2

r (Ω)),

of (4.8), since
ϑ0 ∈ B2−2/p

pp (Ω) ↪→ B2−2/r
rr (Ω), p ≥ r.

At this point we use equation (6.8) from the proof of Proposition 4.1 to conclude
∂tψ ∈ Ls(Jmax × Ω), with s = min{p, q} where q is restricted by

1
q
≥ 1
r
− 2
n+ 4

.
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For the case r = 2(n+ 4)/n, this yields

1
q
≥ n− 4

2(n+ 4)
,

i.e. q may be arbitrarily large in case n ≤ 3 and we may set s = p. Now we solve
(4.8) again, this time with g ∈ Lp(Jmax × Ω), to obtain

ϑ ∈ H1
p (Jmax;Lp(Ω)) ∩ Lp(Jmax;H2

p (Ω))

and therefore ϑ(Tmax) ∈ B2−2/p
pp (Ω) is well defined. Next, consider the equation

∂tψ + ∆2ψ = ∆Φ′(ψ)−∆(λ′(ψ)ϑ),

subject to the initial and boundary conditions ψ(0) = ψ0 and ∂νψ = ∂ν∆ψ = 0.
By maximal Lp-regularity there exists a constant M = M(Jmax) > 0 such that

|ψ|E1(T ) ≤M(1 + |∆Φ′(ψ)|X(T ) + |∆(λ′(ψ)ϑ)|X(T )). (4.9)

for each T ∈ Jmax. Since ϑ ∈ E2(Tmax) we may apply [12, Lemma 4.1] to the result

|∆Φ′(ψ)|X(T ) + |∆(λ′(ψ)ϑ)|X(T ) ≤ C(1 + |ψ|δE1(T )), (4.10)

with some δ ∈ (0, 1) and C > 0 being independent of T ∈ Jmax. Combining (4.9)
with (4.10), we obtain the estimate

|ψ|E1(T ) ≤ C(1 + |ψ|δE1(T )),

which in turn yields that |ψ|E1(T ) is bounded as T ↗ Tmax, since δ ∈ (0, 1).
Therefore the value ψ(Tmax) ∈ B4−4/p

pp (Ω) is well defined and we may continue the
solution (ψ, ϑ) beyond the point Tmax, contradicting the assumption that Jmax =
[0, Tmax) is the maximal interval of existence. We summarize these considerations
in

Theorem 4.2. Let n ≤ 3, p > (n+2)/2, p ≥ 2 and p 6= 3, 5. Assume that (H1)-(H3)
hold. Then for each T0 > 0 there exists a unique solution

ψ ∈ H1
p (J0;Lp(Ω)) ∩ Lp(J0;H4

p (Ω)) = E1(T0)

and
ϑ ∈ H1

p (J0;Lp(Ω)) ∩ Lp(J0;H2
p (Ω)) = E2(T0),

of (1.2), provided the data are subject to the following conditions.

1. ψ0 ∈ B4−4/p
pp (Ω), ϑ0 ∈ B2−2/p

pp (Ω);
2. ∂ν∆ψ0 = 0, if p > 5, ∂νψ0 = 0;
3. ∂νϑ0 = 0, if p > 3, ϑ0(x) > 0 for all x ∈ Ω̄.

The solution depends continuously on the given data and the map (ψ0, ϑ0) 7→ (ψ, ϑ)
defines a semiflow on the natural phase manifold

Mp := {(ψ0, ϑ0) ∈ B4−4/p
pp (Ω)×B2−2/p

pp (Ω) : ψ0 and ϑ0 satisfy 2. & 3.}.
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5. Asymptotic Behavior

Let n ≤ 3. In the following we will investigate the asymptotic behavior of global
solutions of the homogeneous system

∂tψ −∆µ = 0, µ = −∆ψ + Φ′(ψ)− λ′(ψ)ϑ, t > 0, x ∈ Ω,

∂t (b(ϑ) + λ(ψ))−∆ϑ = 0, t > 0, x ∈ Ω,
∂νµ = 0, t > 0, x ∈ ∂Ω,
∂νψ = 0, t > 0, x ∈ ∂Ω,
∂νϑ = 0, t > 0, x ∈ ∂Ω,

ψ(0) = ψ0, ϑ(0) = ϑ0, t = 0, x ∈ Ω,

(5.1)

as t → ∞. To this end let (ψ0, ϑ0) ∈ Mp, p > (n + 2)/2, p ≥ 2 and denote by
(ψ(t), ϑ(t)) the unique global solution of (5.1). In the sequel we will make use of
the following assumptions.

(H4) b ∈ C3−((0,∞)), b′(s) > 0 on (0,∞) and there is a constant κ > 1 such that

1
κ
≤ ϑ(t, x) ≤ κ

on Jmax × Ω. In particular, there exists σ > 1 such that

1
σ
≤ b′(ϑ(t, x)) ≤ σ,

on Jmax × Ω.
(H5) The functions Φ, λ and b are real analytic on R.

We remark that assumption (H4) is identical to (H3) for a global solution. We
stated it here for the sake of readability.

Note that the boundary conditions (5.1)3,5 yield∫
Ω

ψ(t, x) dx ≡
∫

Ω

ψ0(x) dx,

and ∫
Ω

(b(ϑ(t, x)) + λ(ψ(t, x))) dx ≡
∫

Ω

(b(ϑ0(x)) + λ(ψ0(x))) dx.

Replacing ψ by ψ̃ = ψ − c, where c := 1
|Ω|

∫
Ω
ψ0(x) dx we see that

∫
Ω
ψ̃ dx ≡ 0, if

Φ(s) and λ(s) are replaced by Φ̃(s) = Φ(s + c) and λ̃(s) = λ(s + c), respectively.
Similarly we can achieve that∫

Ω

(b(ϑ(t, x)) + λ(ψ(t, x))) dx ≡ 0,

by a shift of λ, to be precise λ̄(s) := λ(s)− d, where

d :=
1
|Ω|

∫
Ω

(b(ϑ0(x)) + λ(ψ0(x))) dx.
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With these modifications of the data we obtain the constraints∫
Ω

ψ(t, x) dx ≡ 0 and
∫

Ω

(b(ϑ(t, x)) + λ(ψ(t, x))) dx ≡ 0. (5.2)

Recall from Section 4 the energy functional

E(u, v) =
1
2
|∇u|22 +

∫
Ω

Φ(u) dx+
∫

Ω

β(v) dx,

defined on the energy space V = V1 × V2, where

V1 :=
{
u ∈ H1

2 (Ω) :
∫

Ω

u dx = 0
}
, V2 := Hr

2 (Ω), r ∈ (n/4, 1).

and V is equipped with the canonical norm |(u, v)|V := |u|H1
2 (Ω) + |v|Hr

2 (Ω). It is
convenient to embed V into a Hilbert space H = H1 ×H2 where

H1 :=
{
u ∈ L2(Ω) :

∫
Ω

u dx = 0
}

and H2 := L2(Ω).

Proposition 5.1. Let (ψ, ϑ) ∈ E1 × E2 be a global solution of (5.1) and assume
(H1)-(H4). Then

1. ψ ∈ L∞(R+;H2s
p (Ω)), s ∈ [0, 1), p ∈ (1,∞), ∂tψ ∈ L2(R+ × Ω);

2. ϑ ∈ L∞(R+;H1
2 (Ω)), ∂tϑ ∈ L2(R+ × Ω).

In particular the orbits ψ(R+) and ϑ(R+) are relatively compact in H1
2 (Ω) and

Hr
2 (Ω), respectively, where r ∈ [0, 1).

Proof. Assertions 1 & 2 follow directly from (H1)-(H4) and the proof of Proposition
4.1, which is given in the Appendix. Indeed, one may replace the interval Jmax by
R+, since the operator −A2 = −∆2

N generates an exponentially stable, analytic
semigroup e−A2t in the space

Xp := {u ∈ Lp(Ω) :
∫

Ω

u dx = 0}

with domain

D(A2) = {u ∈ H4
p (Ω) ∩ Xp : ∂νu = ∂ν∆u = 0 on ∂Ω}.

�

By Assumption (H4), there exists some bounded interval Jϑ ⊂ R+ with
ϑ(t, x) ∈ Jϑ for all t ≥ 0, x ∈ Ω. Therefore we may modify the nonlinearities b
and β outside Jϑ in such a way that b, β ∈ C3−

b (R).
Unfortunately the energy functional E is not yet the right one for our purpose,

since we have to include the nonlinear constraint∫
Ω

(λ(ψ) + b(ϑ)) dx = 0,
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into our considerations. The linear constraint
∫
Ω
ψ dx = 0 is part of the definition

of the space H1. For the nonlinear constraint we use a functional of Lagrangian
type which is given by

L(u, v) = E(u, v)− vF (u, v),

defined on V , where F (u, v) :=
∫
Ω
(λ(u) + b(v)) dx and w̄ = 1

|Ω|
∫
Ω
w dx for a

function w ∈ L1(Ω). Concerning the differentiability of L we have the following
result.

Proposition 5.2. Under the conditions (H1)-(H4), the functional L is twice con-
tinuously Fréchet differentiable on V and the derivatives are given by

〈L′(u, v), (h, k)〉V ∗,V =

〈E′(u, v), (h, k)〉V ∗,V − kF (u, v)− v〈F ′(u, v), (h, k)〉V ∗,V (5.3)

and

〈L′′(u, v)(h1, k1), (h2, k2)〉V ∗,V = 〈E′′(u, v)(h1, k1), (h2, k2)〉V ∗,V−
k1〈F ′(u, v), (h2, k2)〉V ∗,V − k2〈F ′(u, v), (h1, k1)〉V ∗,V−

v〈F ′′(u, v)(h1, k1), (h2, k2)〉V ∗,V , (5.4)

where (h, k), (hj , kj) ∈ V, j = 1, 2, and

〈E′(u, v), (h, k)〉V ∗,V =
∫

Ω

∇u∇h dx+
∫

Ω

Φ′(u)h dx+
∫

Ω

β′(v)k dx,

〈E′′(u, v)(h1, k1), (h2, k2)〉V ∗,V =∫
Ω

∇h1∇h2 dx+
∫

Ω

Φ′′(u)h1h2 dx+
∫

Ω

β′′(v)k1k2 dx,

〈F ′(u, v), (h, k)〉V ∗,V =
∫

Ω

λ′(u)h dx+
∫

Ω

b′(v)k dx

and

〈F ′′(u, v)(h1, k1), (h2, k2)〉V ∗,V =
∫

Ω

λ′′(u)h1h2 dx+
∫

Ω

b′′(v)k1k2 dx.

Proof. We only consider the first derivative, the second one is treated in a similar
way. Since the bilinear form

a(u, v) :=
∫

Ω

∇u(x)∇v(x) dx (5.5)

defined on V1 × V1 is bounded and symmetric, the first term in E is twice contin-
uously Fréchet differentiable. For the functional

G1(u) :=
∫

Ω

Φ(u) dx, u ∈ V1,
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we argue as follows. With u, h ∈ V1 it holds that

Φ(u(x) + h(x))− Φ(u(x))− Φ′(u(x))h(x)

=
∫ 1

0

d

dt
Φ(u(x) + th(x)) dt−

∫ 1

0

Φ′(u(x))h(x) dt

=
∫ 1

0

(
Φ′(u(x) + th(x))− Φ′(u(x))

)
h(x) dt

=
∫ 1

0

∫ t

0

d

ds
Φ′(u(x) + sh(x))h(x) ds dt

=
∫ 1

0

∫ t

0

Φ′′(u(x) + sh(x))h(x)2 ds dt

=
∫ 1

0

Φ′′(u(x) + sh(x))h(x)2(1− s) ds.

From the growth condition (H1), Hölder’s inequality and the Sobolev embedding
theorem it follows that∣∣∣ ∫

Ω

(
Φ(u(x) + h(x))− Φ(u(x))− Φ′(u(x))h(x)

)
dx

∣∣∣
≤ C

∫
Ω

(1 + |u(x)|4 + |h(x)|4)|h(x)|2 dx

≤ C(1 + |u|46 + |h|46)|h|26
≤ C(1 + |u|4V1

+ |h|4V1
)|h|2V1

.

This proves that G1 is Fréchet differentiable and also G′1(u) = Φ′(u) ∈ L6/5(Ω) ↪→
V ∗1 . The next step is the proof of the continuity of G′1 : V1 → V ∗1 . We make again
use of (H1), the Hölder inequality and the Sobolev embedding theorem to obtain

|G′1(u)−G′1(ū)|V ∗
1

≤ C

(∫
Ω

|Φ′(u(x))− Φ′(ū(x))| 65 dx
) 5

6

≤ C

(∫
Ω

∫ 1

0

|Φ′′(tu(x) + (1− t)ū(x))| 65 |u(x)− ū(x)| 65 dt dx
) 5

6

≤ C

(∫
Ω

(1 + |u(x)| 245 + |ū(x)| 245 )|u(x)− ū(x)| 65 dx
) 5

6

≤ C

(∫
Ω

(1 + |u(x)|6 + |ū(x)|6) dx
) 2

3
(∫

Ω

|u(x)− ū(x)|6
) 1

6

≤ C(1 + |u|4V1
+ |ū|4V1

)|u− ū|V1 .

Actually this proves thatG′1 is even locally Lipschitz continuous on V1. The Fréchet
differentiability of G′1 and the continuity of G′′1 can be proved in an analogue
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way. The fundamental theorem of differential calculus and the Sobolev embedding
theorem yield the estimate

|Φ′(u+ h)− Φ′(u)− Φ′′(u)h|V ∗
1

≤ C

(∫
Ω

∫ 1

0

|Φ′′′(u(x) + sh(x))| 65 |h(x)| 125 ds dx

) 5
6

.

We apply Assumption (H1) and Hölder’s inequality to the result

|Φ′(u+ h)− Φ′(u)− Φ′′(u)h|V ∗
1

≤ C

(∫
Ω

(1 + |u(x)| 185 + |h(x)| 185 )|h(x)| 125 dx

) 5
6

≤ C

(∫
Ω

(1 + |u(x)|6 + |h(x)|6) dx
) 1

2
(∫

Ω

|h(x)|6 dx
) 1

3

= C(1 + |u|3V1
+ |h|3V1

)|h|2V1
.

Hence the Fréchet derivative is given by the multiplication operator G′′1(u) defined
by G′′1(u)v = Φ′′(u)v for all v ∈ V1 and Φ′′(u) ∈ L3/2(Ω). We will omit the proof
of continuity of G′′1 . The way to show the C2-property of the functional

G2(u) :=
∫

Ω

λ(u(x)) dx, u ∈ V1,

is identical to the one above, by Assumption (H2). Concerning the C2-differentiability
of the functionals

G3(v) :=
∫

Ω

β(v(x)) dx and G4(v) :=
∫

Ω

b(v(x)) dx, v ∈ V2,

one may adopt the proof for G1 and G2. In fact, this time it is easier, since β
and b are assumed to be elements of the space C3−

b (R), however one needs the
assumption r ∈ (n/4, 1). We will skip the details. Finally the product rule of
differentiation yields that L is twice continuously Fréchet differentiable on V1×V2.

�

The corresponding stationary system to (5.1) will be of importance for the
forthcoming calculations. Setting all time-derivatives in (5.1) equal to 0 yields

∆µ = 0 and ∆ϑ = 0,

subject to the boundary conditions ∂νµ = ∂νϑ = 0. Thus we have µ ≡ µ∞ = const,
ϑ ≡ ϑ∞ = const and there remains the nonlinear elliptic problem of second order{

−∆ψ∞ + Φ′(ψ∞)− λ′(ψ∞)ϑ∞ = µ∞, x ∈ Ω,
∂νψ∞ = 0, x ∈ ∂Ω,

(5.6)
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with the constraints (5.2) for the unknowns ψ∞ and ϑ∞. The following proposition
collects some properties of the functional L and the ω-limit set

ω(ψ, ϑ) := {(ϕ, θ) ∈ V1 × V2 : ∃ (tn) ↗∞ s.t.

(ψ(tn), ϑ(tn)) → (ϕ, θ) in V1 × V2}.

Proposition 5.3. Under Hypotheses (H1)-(H4) the following assertions are true.

1. The ω-limit set is nonempty, connected and compact.
2. Each point (ψ∞, ϑ∞) ∈ ω(ψ, ϑ) is a strong solution of the stationary problem

(5.6), where ϑ∞, µ∞ = const and (ψ∞, ϑ∞) satisfies the constraints (5.2) for
the unknowns ϑ∞, µ∞.

3. The functional L is constant on ω(ψ, ϑ) and each point (ψ∞, ϑ∞) ∈ ω(ψ, ϑ)
is a critical point of L, i.e. L′(ψ∞, ϑ∞) = 0 in V ∗.

Proof. The fact that ω(ψ, ϑ) is nonempty, connected and compact follows from
Proposition 5.1 and some well-known facts in the theory of dynamical systems.

Now we turn to 2. Let (ψ∞, ϑ∞) ∈ ω(ψ, ϑ). Then there exists a sequence
(tn) ↗ +∞ such that (ψ(tn), ϑ(tn)) → (ψ∞, ϑ∞) in V as n→∞. Since ∂tψ, ∂tϑ ∈
L2(R+ × Ω) it follows that ψ(tn + s) → ψ∞ and ϑ(tn + s) → ϑ∞ in L2(Ω) for all
s ∈ [0, 1] and by relative compactness also in V . This can be seen as follows.

|ψ(tn + s)− ψ∞|2 ≤ |ψ(tn + s)− ψ(tn)|2 + |ψ(tn)− ψ∞|2

≤
∫ tn+s

tn

|∂tψ(t)|2 dt+ |ψ(tn)− ψ∞|2

≤ s1/2

(∫ tn+s

tn

|∂tψ(t)|22 dt
)1/2

+ |ψ(tn)− ψ∞|2.

Then, for tn →∞ this yields ψ(tn + s) → ψ∞ for all s ∈ [0, 1]. The proof for ϑ is
the same. Integrating (4.4) with f1 = f2 = 0 from tn to tn + 1 we obtain

E(ψ(tn + 1), ϑ(tn + 1))− E(ψ(tn), ϑ(tn))

+
∫ 1

0

∫
Ω

(
|∇µ(tn + s, x)|2 + |∇ϑ(tn + s, x)|2

)
dx ds = 0.

Letting tn → +∞ yields

|∇µ(tn + ·, ·)|, |∇ϑ(tn + ·, ·)| → 0 in L2([0, 1]× Ω).

This in turn yields a subsequence (tnk
) such that ∇µ(tnk

+ s),∇ϑ(tnk
+ s) → 0

in L2(Ω; Rn) for a.e. s ∈ [0, 1]. Hence ∇ϑ∞ = 0, since the gradient is a closed
operator in L2(Ω; Rn). This in turn yields that ϑ∞ is a constant.
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Furthermore the Poincaré-Wirtinger inequality implies that

|µ(tnk
+ s∗)− µ(tnl

+ s∗)|2

≤ Cp

(
|∇µ(tnk

+ s∗)−∇µ(tnl
+ s∗)|2 +

∫
Ω

|Φ′(ψ(tnk
+ s∗))−Φ′(ψ(tnl

+ s∗))| dx

+
∫

Ω

|λ′(ψ(tnk
+ s∗))ϑ(tnk

+ s∗)− λ′(ψ(tnl
+ s∗))ϑ(tnl

+ s∗)| dx,

for some s∗ ∈ [0, 1]. Taking the limit k, l→∞ we see that µ(tnk
+ s∗) is a Cauchy

sequence in L2(Ω), hence it admits a limit, which we denote by µ∞. In the same
manner as for ϑ∞ we therefore obtain ∇µ∞ = 0, hence µ∞ is a constant. Observe
that the relation

µ∞ =
1
|Ω|

(∫
Ω

(Φ′(ψ∞)− λ′(ψ∞)ϑ∞) dx
)

is valid. Multiplying (5.1)1 by a function ϕ ∈ H1
2 (Ω) and integrating by parts we

obtain

(µ(tnk
+ s∗), ϕ)2 = (∇ψ(tnk

+ s∗),∇ϕ)2+

(Φ′(ψ(tnk
+ s∗)), ϕ)2 − (λ′(ψ(tnk

+ s∗))ϑ(tnk
+ s∗), ϕ)2.

As tnk
→∞ it follows that

(µ∞, ϕ)2 = (∇ψ∞,∇ϕ)2 + (Φ′(ψ∞), ϕ)2 − ϑ∞(λ′(ψ∞), ϕ)2. (5.7)

By the Lax-Milgram theorem the bounded, symmetric and elliptic form

a(u, v) :=
∫

Ω

∇u∇v dx,

defined on the space V1 × V1 induces a bounded operator A : V1 → V ∗1 with
nonempty resolvent, such that

a(u, v) = 〈Au, v〉V ∗
1 ,V1 ,

for all (u, v) ∈ V1 × V1. It is well-known that the domain of the part Ap of the
operator A in

Xp = {u ∈ Lp(Ω) :
∫

Ω

u dx = 0}

is given by

D(Ap) = {u ∈ Xp ∩H2
p (Ω), ∂νu = 0}.

Going back to (5.7) we obtain from (H1) and (H2) that ψ∞ ∈ D(Aq), where
q = 6/(β + 2). Since q > 6/5 we may apply a bootstrap argument to conclude
ψ∞ ∈ D(A2). Integrating (5.7) by parts, assertion 2 follows.
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In order to prove 3. , we make use of (5.3) to obtain

〈L′(ψ∞, ϑ∞), (h, k)〉V ∗,V

= 〈E′(ψ∞, ϑ∞), (h, k)〉V ∗,V − ϑ∞〈F ′(ψ∞, ϑ∞), (h, k)〉V ∗,V

=
∫

Ω

(−∆ψ∞ + Φ′(ψ∞))h dx+
∫

Ω

β′(ϑ∞)k dx

− ϑ∞

∫
Ω

(λ′(ψ∞)h+ b′(ϑ∞)k) dx

=
∫

Ω

µ∞h dx = 0,

for all (h, k) ∈ V , since µ∞ and ϑ∞ are constant. A continuity argument finally
yields the last statement of the proposition.

�

The following result is crucial for the proof of convergence.

Proposition 5.4 (Lojasiewicz-Simon inequality). Let (ψ∞, ϑ∞) ∈ ω(ψ, ϑ) and as-
sume (H1)-(H5). Then there exist constants s ∈ (0, 1

2 ], C, δ > 0 such that

|L(u, v)− L(ψ∞, ϑ∞)|1−s ≤ C|L′(u, v)|V ∗ ,

whenever |(u, v)− (ψ∞, ϑ∞)|V ≤ δ.

Proof. We show first that dimN(L′′(ψ∞, ϑ∞)) <∞. By (5.4) we obtain

〈L′′(ψ∞, ϑ∞)(h1, k1),(h2, k2)〉V ∗,V

=
∫

Ω

∇h1∇h2 dx+
∫

Ω

Φ′′(ψ∞)h1h2 dx+
∫

Ω

β′′(ϑ∞)k1k2 dx

− k1

∫
Ω

(λ′(ψ∞)h2 + b′(ϑ∞)k2) dx

− k2

∫
Ω

(λ′(ψ∞)h1 + b′(ϑ∞)k1) dx

− ϑ∞

∫
Ω

(λ′′(ψ∞)h1h2 + b′′(ϑ∞)k1k2) dx.

Since β′′(s) = b′(s) + sb′′(s) and ϑ∞ ≡ const we have

〈L′′(ψ∞, ϑ∞)(h1, k1), (h2, k2)〉V ∗,V

=
∫

Ω

∇h1∇h2 dx+
∫

Ω

(
Φ′′(ψ∞)h1 − k1λ

′(ψ∞)− ϑ∞λ
′′(ψ∞)h1

)
h2 dx

+
∫

Ω

(b′(ϑ∞)(k1 − 2k1)− λ′(ψ∞)h1)k2 dx

for all (hj , kj) ∈ V . If (h1, k1) ∈ N(L′′(ψ∞, ϑ∞)), it follows that

b′(ϑ∞)(k1 − 2k1)− λ′(ψ∞)h1 = 0.
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It is obvious that a solution k1 to this equation must be constant, hence it is given
by

k1 = −(b′(ϑ∞))−1λ′(ψ∞)h1, (5.8)
where we also made use of (H4). Concerning h1 we have

〈Ah1, h2〉V ∗
1 ,V1 =

∫
Ω

(k1λ
′(ψ∞) + ϑ∞λ

′′(ψ∞)h1 − Φ′′(ψ∞)h1)h2 dx, (5.9)

since k1 is constant. By Proposition 5.3 it holds that ψ∞ ∈ D(A2) ↪→ L∞(Ω),
hence Ah1 ∈ H1, which means that h1 ∈ D(A2) and from (5.9) we obtain

A2h1 + P (Φ′′(ψ∞)h1 − ϑ∞λ
′′(ψ∞)h1 − k1λ

′(ψ∞)) = 0,

where P denotes the projection P : H2 → H1, defined by Pu = u − u. It is an
easy consequence of the embedding D(A2) ↪→ L∞(Ω) that the linear operator
B : H1 → H1 given by

Bh1 = P (Φ′′(ψ∞)h1 − ϑ∞λ
′′(ψ∞)h1 − k1λ

′(ψ∞))

is bounded, where k1 is given by (5.8). Furthermore the operator A2 defined in
the proof of Proposition 5.3 is invertible, hence A−1

2 B : H1 → D(A2) is a compact
operator by compact embedding and this in turn yields that (I + A−1

2 B) is a
Fredholm operator. In particular it holds that dimN(I + A−1

2 B) < ∞, whence
N(L′′(ψ∞, ϑ∞)) is finite dimensional and moreover

N(L′′(ψ∞, ϑ∞)) ⊂ D(A2)× (Hr
2 (Ω) ∩ L∞(Ω)) ↪→ L∞(Ω)× L∞(Ω).

By Hypothesis (H5), the restriction of L′ to the space D(A2)× (Hr
2 (Ω) ∩L∞(Ω))

is analytic in a neighbourhood of (ψ∞, θ∞). For the definition of analyticity in
Banach spaces we refer to [5, Section 3]. Now the claim follows from [5, Theorem
3.10 & Corollary 3.11].

�

Let us now state the main result of this section.

Theorem 5.5. Assume (H1)-(H5) and let (ψ, ϑ) be a global solution of (5.1). Then
the limits

lim
t→∞

ψ(t) =: ψ∞, and lim
t→∞

ϑ(t) =: ϑ∞ = const

exist in H1
2 (Ω) and Hr

2 (Ω), r ∈ (0, 1), respectively, and (ψ∞, ϑ∞) is a strong
solution of the stationary problem (5.6).

Proof. Since by Proposition 5.3 the ω-limit set is compact, we may cover it by
a union of finitely many balls with center (ϕi, θi) ∈ ω(ψ, ϑ) and radius δi > 0,
i = 1, . . . , N . Since L(u, v) ≡ L∞ on ω(ψ, ϑ) and each (ϕi, θi) is a critical point
of L, there are uniform constants s ∈ (0, 1

2 ], C > 0 and an open set U ⊃ ω(ψ, ϑ),
such that

|L(u, v)− L∞|1−s ≤ C|L′(u, v)|V ∗ , (5.10)
for all (u, v) ∈ U . Define H : R+ → R+ by

H(t) := (L(ψ(t), ϑ(t))− L∞)s.
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The function H is nonincreasing and limt→∞H(t) = 0, since L(ψ(t), ϑ(t)) =
E(ψ(t), ϑ(t)) and since E is a strict Lyapunov functional for (5.1), which follows
from (4.4). Furthermore we have limt→∞ dist((ψ(t), ϑ(t)), ω(ψ, ϑ)) = 0, i.e. there
exists t∗ ≥ 0, such that (ψ(t), ϑ(t)) ∈ U , for all t ≥ t∗. Next, we compute and
estimate the time derivative of H. By (4.4) and Proposition 5.4 we obtain

− d

dt
H(t) = s

(
− d

dt
L(ψ(t), ϑ(t))

)
|L(ψ(t), ϑ(t))− L∞|s−1

≥ C
|∇µ(t)|22 + |∇ϑ(t)|22
|L′(ψ(t), ϑ(t))|V ∗

(5.11)

So have to estimate the term |L′(ψ(t), ϑ(t))|V ∗ . For convenience we will write
ψ = ψ(t) and ϑ = ϑ(t). From (5.3) we obtain with h̄ = 0

〈L′(ψ, ϑ), (h, k)〉V ∗,V

=
∫

Ω

(−∆ψ + Φ′(ψ))h dx+
∫

Ω

ϑb′(ϑ)k dx− ϑ

∫
Ω

(λ′(ψ)h+ b′(ϑ)k) dx

=
∫

Ω

(µ− µ)h dx+
∫

Ω

(ϑ− ϑ)λ′(ψ)h dx+
∫

Ω

(ϑ− ϑ)b′(ϑ)k dx

(5.12)

An application of the Hölder and Poincaré-Wirtinger inequality yields the esti-
mates

|
∫

Ω

(ϑ− ϑ)λ′(ψ)h dx| ≤ |λ′(ψ)|∞|ϑ− ϑ|2|h|2 ≤ c|∇ϑ|2|h|2, (5.13)

|
∫

Ω

(ϑ− ϑ)b′(ϑ)k dx| ≤ |b′(ϑ)|∞|ϑ− ϑ|2|k|2 ≤ c|∇ϑ|2|k|2 (5.14)

and

|
∫

Ω

(µ− µ)h dx| ≤ c|∇µ|2|h|2, (5.15)

whence we obtain

|L′(ψ(t), ϑ(t))|V ∗ ≤ C(|∇µ(t)|2 + |∇ϑ(t)|2),

by taking the supremum over all functions (h, k) ∈ V with norm less than 1 in
(5.12)-(5.15). This in connection with (5.11) yields

− d

dt
H(t) ≥ C(|∇µ(t)|2 + |∇ϑ(t)|2),

hence |∇µ|, |∇ϑ| ∈ L1([t∗,∞), L2(Ω)). Using the equation ∂tψ = ∆µ we see that
∂tψ ∈ L1([t∗,∞),H1

2 (Ω)∗), hence the limit

lim
t→∞

ψ(t) =: ψ∞



Conserved Penrose-Fife type models 27

exists in H1
2 (Ω)∗ and even in H1

2 (Ω) thanks to Proposition 5.1. From equation
(5.1)2 it follows that ∂te ∈ L1([t∗,∞);H1

2 (Ω)∗), where e := b(ϑ) + λ(ψ), i.e. the
limit limt→∞ e(t) exists in H1

2 (Ω)∗. This in turn yields that the limit

lim
t→∞

b(ϑ(t)) =: b∞

exists in L2(Ω), by relative compactness, cf. Proposition 5.1. By the monotonicity
assumption (H3) we obtain ϑ(t) = b−1(b(ϑ(t))) and thus the limit of ϑ(t) as t
tends to infinity exists in L2(Ω). From the relative compactness of the orbit ϑ(R+)
it follows that the limit

lim
t→∞

ϑ(t) =: ϑ∞

also exists in Hr
2 (Ω), r ∈ [0, 1). Finally Proposition 5.3 yields the last statement

of the theorem.
�

6. Appendix

Proof of Proposition 3.1
Let (u, v), (ū, v̄) ∈ BR(u∗, v∗). By Sobolev embedding it holds that u, ū and

v, v̄ are uniformly bounded in C1(Ω) and C(Ω), respectively. Furthermore, we will
use the following inequality, which has been proven in [17, Lemma 6.2.3].

|f(w)−f(w̄)|Hs
p(Lp) ≤ µ(T )(|w−w̄|Hs0

p (Lp)+|w−w̄|∞,∞), 0 < s < s0 < 1, (6.1)

valid for every f ∈ C2−(R) and all w, w̄ ∈ B1
R(u∗)∪B2

R(v∗). Here µ = µ(T ) denotes
a function, with the property µ(T ) → 0 as T → 0. The proof consists of several
steps

(i) By Hölders inequality it holds that

|∆Φ′(u)−∆Φ′(ū)|X(T )

≤ |∆uΦ′′(u)−∆ūΦ′′(ū)|X(T ) + ||∇u|2Φ′′′(u)− |∇ū|2Φ′′′(ū)|X(T )

≤ |∆u|rp,rp|Φ′′(u)− Φ′′(ū)|r′p,r′p + |∆u−∆ū|rp,rp|Φ′′(ū)|r′p,r′p

+ T 1/p
(
|∇u|2∞,∞|Φ′′′(u)− Φ′′′(ū)|∞,∞ + |∇u−∇ū|∞,∞|Φ′′′(ū)|∞,∞

)
≤ T 1/r′p (|∆u|rp,rp|Φ′′(u)− Φ′′(ū)|∞,∞ + |∆u−∆ū|rp,rp|Φ′′(ū)|∞,∞)

+ T 1/p
(
|∇u|2∞,∞|Φ′′′(u)− Φ′′′(ū)|∞,∞ + |∇u−∇ū|∞,∞|Φ′′′(ū)|∞,∞

)
,

since u, ū ∈ C(J ;C1(Ω)). We have

∆w ∈ Hθ2/2
p (J ;H2(1−θ2)

p (Ω)) ↪→ Lrp(J × Ω), θ2 ∈ [0, 1],

for every function w ∈ E1(T ), since r > 1 may be chosen close to 1. Therefore we
obtain

|∆Φ′(u)−∆Φ′(ū)|X(T ) ≤ µ(T ) (R+ |u∗|1) |u− ū|1,
due to the assumption Φ ∈ C4−(R).
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(ii) Consider the term (λ′(ψ0)− λ′(u))∆v − (λ′(ψ0)− λ′(ū))∆v̄.

|(λ′(ψ0)− λ′(u))∆v − (λ′(ψ0)− λ′(ū))∆v̄|X(T )

≤ |(λ′(ψ0)− λ′(u))∆(v − v̄)|X(T ) + |(λ′(u)− λ′(ū))∆v̄|X(T )

≤ |ψ0 − u|∞,∞|v − v̄|E2(T ) + |u− ū|∞,∞|v̄|E2(T )

≤ (|ψ0 − u∗|∞,∞ + |u∗ − u|∞,∞)|v − v̄|E2(T )

+ |u− ū|E1(T )(|v̄ − v∗|E2(T ) + |v∗|E2(T ))

≤ C(µ(T ) +R)|(u, v)− (ū, v̄)|1,

since λ ∈ C4−(R). Next, we consider the term ∇(λ′(ψ0)− λ′(u))∇v −∇(λ′(ψ0)−
λ′(ū))∇v̄. We obtain

|∇(λ′(ψ0)− λ′(u))∇v −∇(λ′(ψ0)− λ′(ū))∇v̄|X(T )

≤ |∇(λ′(ψ0)− λ′(u))|∞|∇(v − v̄)|X(T ) + |∇(λ′(u)− λ′(ū))|∞|∇v̄|X(T ).

Since

∇(λ′(ψ0)− λ′(u)) = ∇ψ0(λ′′(ψ0)− λ′′(u)) + λ′′(u)(∇ψ0 −∇u),

and the same for ∇(λ′(u)− λ′(ū)), we may argue as above, to conclude

|∇(λ′(ψ0)− λ′(u))|∞,∞|∇(v − v̄)|X(T ) + |∇(λ′(u)− λ′(ū))|∞,∞|∇v̄|X(T )

≤ (µ(T ) +R)|(u, v)− (ū, v̄)|1.

Finally, we estimate the remaining part with Hölder’s inequality to the result

|v∆(λ′(ψ0)− λ′(u))− v̄∆(λ′(ψ0)− λ′(ū))|X(T )

≤ |v − v̄|∞,∞|∆(λ′(ψ0)− λ′(u))|X(T ) + |v̄|r′p,r′p|∆(λ′(u)− λ′(ū))|rp,rp, (6.2)

where 1/r + 1/r′ = 1. For the first part, we obtain

|∆(λ′(ψ0)− λ′(u))|X(T )

≤ |∆ψ0|p|λ′′(ψ0)− λ′′(u)|∞,∞ + |∆ψ0 −∆u|p|λ′′(u)|∞,∞

+ |∇ψ0|2∞,∞|λ′′′(ψ0)− λ′′′(u)|∞,∞ + |λ′′′(u)|∞,∞|∇ψ0 −∇u|∞,∞

≤ C(|ψ0 − u|∞,∞ + |∇ψ0 −∇u|∞,∞ + |∆ψ0 −∆u|p,p)

≤ C(µ(T ) +R),

since ψ0 ∈ H2
p (Ω)∩C1(Ω) and λ ∈ C4−(R). For the second term in (6.2) we obtain

|∆(λ′(u)− λ′(ū))|rp,rp

≤ |∆u|rp,rp|λ′′(u)− λ′′(ū)|∞,∞ + |λ′′(ū)|∞,∞|∆u−∆ū|rp,rp

+ |∇u|2∞,∞|λ′′′(u)− λ′′′(ū)|∞,∞ + |λ′′′(ū)|∞,∞|∇u−∇ū|∞,∞

≤ C|u− ū|E1(T ),
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since u, ū ∈ C(J ;C1(Ω)) and r > 1 can be chosen close enough to 1, due to the
fact that v̄ ∈ C(J ;C(Ω)). Finally, we observe

|v̄|r′p,r′p ≤ |v̄ − v∗|r′p,r′p + |v∗|r′p,r′p ≤ µ(T ) +R.

(iii) For simplicity we set f(u, v) = a0λ
′(ψ0)− a(v)λ′(u). Then we compute

|f(u, v)∂tu− f(ū, v̄)∂tū|X(T )

≤ |∂tu(f(u, v)− f(ū, v̄))|X(T ) + |f(ū, v̄)(∂tu− ∂tū)|X(T ) (6.3)

≤ (|∂tu− ∂tu
∗|X(T ) + |∂tu

∗|X(T ))|f(u, v)− f(ū, v̄)|∞,∞

+ |f(ū, v̄)|∞,∞|∂tu− ∂tū|X(T )

≤ C(µ3(T ) +R)|f(u, v)− f(ū, v̄)|∞,∞

+ |f(ū, v̄)|∞,∞|∂tu− ∂tū|X(T ).

Next we estimate

|f(u, v)− f(ū, v̄)|∞,∞

≤ |a(v)(λ′(u)− λ′(ū))|∞,∞ + |λ′(ū)(a(v)− a(v̄))|∞,∞

≤ |a(v)|∞,∞|λ′(u)− λ′(ū)|∞,∞ + |λ′(ū)|∞,∞|a(v)− a(v̄)|∞,∞

≤ C(|u− ū|∞,∞ + |v − v̄|∞,∞) ≤ C|(u, v)− (ū, v̄)|1.
Furthermore, we have

|f(ū, v̄)|∞,∞ ≤ |a0|∞,∞|λ′(ψ0)− λ′(ū)|∞,∞ + |λ′(ū)|∞,∞|a0 − a(v̄)|∞,∞

≤ C(|ψ0 − ū|∞,∞ + |ϑ0 − v̄|∞,∞)

≤ C(|ψ0 − u∗|∞,∞ + |u∗ − ū|∞,∞ + |ϑ0 − v∗|∞,∞ + |v∗ − v̄|∞,∞)

≤ C(µ(T ) +R).

The estimate of (a0− a(v))∆v− (a0− a(v̄))∆v̄ in Lp(J ;Lp(Ω)) can be carried out
in a similar way.

(iv) We compute

|(a(v)− a(v̄)f2|X(T ) ≤ |a(v)− a(v̄)|∞,∞|f2|X(T ) ≤ |v − v̄|∞,∞|f2|X(T )

≤ µ(T )|v − v̄|E2(T ) ≤ µ(T )|(u, v)− (ū, v̄)|1,

since f2 ∈ X(T ) is a fixed function, hence |f2|X(T ) → 0 as T → 0.
(v) By trace theory, we obtain

|∂ν(Φ′(u)− Φ′(ū))|Y1(T )

≤ C|Φ′(u)− Φ′(ū)|
H

1/2
p (J;Lp(Ω))

+ |Φ′(u)− Φ′(ū)|Lp(J;H2
p(Ω)).

The second norm has already been estimated in (i), so it remains to estimate
Φ′(u)− Φ′(ū) in H1/2

p (J ;Lp(Ω)). Here we will use (6.1), to obtain

|Φ′(u)− Φ′(ū)|
H

1/2
p (Lp)

≤ µ(T )(|u− ū|Hs0
p (Lp) + |u− ū|∞,∞)

≤ µ(T )C|u− ū|E1(T ) ≤ µ(T )C|(u, v)− (ū, v̄)|1,
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since s0 < 1.
(vi) We may apply (ii) and trace theory, to conclude that it suffices to estimate

(λ′(ψ0)− λ′(u))v − (λ′(ψ0)− λ′(ū))v̄

= (λ′(ψ0)− λ′(u))(v − v̄)− (λ′(u)− λ′(ū))v̄

in H1/2
p (J ;Lp(Ω)). This yields

|(λ′(ψ0)− λ′(u))(v − v̄)|
H

1/2
p (Lp)

≤ |λ′(ψ0)− λ′(u)|
H

1/2
p (Lp)

|v − v̄|∞,∞ + |λ′(ψ0)− λ′(u)|∞,∞|v − v̄|
H

1/2
p (Lp)

≤ (|λ′(ψ0)− λ′(u∗)|
H

1/2
p (Lp)

+ |λ′(u∗)− λ′(u)|
H

1/2
p (Lp)

)|v − v̄|E2(T )

+ (|ψ0 − u∗|∞,∞ + |u∗ − u|∞,∞)|v − v̄|E2(T )

≤
(
|λ′(ψ0)− λ′(u∗)|

H
1/2
p (Lp)

+ µ(T )R+ (µ(T ) +R)
)
|v − v̄|E2(T ).

Clearly λ′(ψ0) − λ′(u∗) ∈ 0H
1/2
p (J ;Lp(Ω)), since ψ0 does not depend on t and

since λ ∈ C4−(R). Therefore it holds that

|λ′(ψ0)− λ′(u∗)|
H

1/2
p (Lp)

→ 0

as T → 0. The second part (λ′(u)− λ′(ū))v̄ can be treated as follows.

|(λ′(u)− λ′(ū))v̄|
H

1/2
p (Lp)

≤ |λ′(u)− λ′(ū)|
H

1/2
p (Lp)

|v̄|∞,∞ + |λ′(u)− λ′(ū)|∞,∞|v̄|H1/2
p (Lp)

≤ C(µ(T ) +R+ µ(T ))|u− ū|E1(T ),

where we applied again (6.1). This completes the proof of the proposition.

Proof of Proposition 4.1
Let Jδ

max := [δ, Tmax] for some small δ > 0. Setting A2 = ∆2
N with domain

D(A2) = {u ∈ H4
p (Ω) : ∂νu = ∂ν∆u = 0 on ∂Ω},

the solution ψ(t) of equation (4.1)1 may be represented by the variation of param-
eters formula

ψ(t) = e−A2tψ0 +
∫ t

0

Ae−A2(t−s)
(
λ′(ψ(s))ϑ(s)− Φ′(ψ(s))

)
ds, t ∈ Jmax, (6.4)

where e−A2t denotes the analytic semigroup, generated by −A2 = −∆2
N in Lp(Ω).

By (H1), (H2) and (4.6) it holds that

Φ′(ψ) ∈ L∞(Jmax;Lq0(Ω)) and λ′(ψ) ∈ L∞(Jmax;L6(Ω)),

with q0 = 6/(γ + 2). We then apply Ar, r ∈ (0, 1), to (6.4) and make use of
semigroup theory to obtain

ψ ∈ L∞(Jδ
max;H

2r
q0

(Ω)), (6.5)
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valid for all r ∈ (0, 1), since q0 < 6. It follows from (6.5) that ψ ∈ L∞(Jδ
max;Lp1(Ω))

if 2r − 3/q0 ≥ −3/p1, and

Φ′(ψ) ∈ L∞(Jδ
max;Lq1(Ω)) as well as λ′(ψ) ∈ L∞(Jδ

max;Lp1(Ω)),

with q1 = p1/(γ + 2). Hence we have this time

ψ ∈ L∞(Jδ
max;H

2r
q1

(Ω)), r ∈ (0, 1).

Iteratively we obtain a sequence (pn)n∈N0 such that

2r − 3
qn

≥ − 3
pn+1

, n ∈ N0

with qn = pn/(γ + 2) and p0 = 6. Thus the sequence (pn)n∈N0 may be recursively
estimated by

1
pn+1

≥ γ + 2
pn

− 2r
3
,

for all n ∈ N0 and r ∈ (0, 1). From this definition it is not difficult to obtain the
following estimate for 1/pn+1.

1
pn+1

≥ (γ + 2)n+1

p0
− 2r

3

n∑
k=0

(γ + 2)k

=
(γ + 2)n+1

p0
− 2r

3

(
(γ + 2)n+1 − 1

γ1 + 1

)
= (γ + 2)n+1

(
1
p0
− 2r

3γ + 3

)
+

2r
3γ + 3

, n ∈ N0. (6.6)

By the assumption (H1) on γ we see that the term in brackets is negative if
r ∈ (0, 1) is sufficiently close to 1 and therefore, after finitely many steps the
entire right side of (6.6) is negative as well, whence we may choose pn arbitrarily
large or we may even set pn = ∞ for n ≥ N and a certain N ∈ N0. In other words
this means that for those r ∈ (0, 1) we have

ψ ∈ L∞(Jδ
max;H

2r
p (Ω)), (6.7)

for all p ∈ [1,∞]. It is important, that we can achieve this result in finitely many
steps!

Next we will derive an estimate for ∂tψ. For all forthcoming calculations we
will use the abbreviation ψ = ψ(t) and ϑ = ϑ(t). Since we only have estimates on
the interval Jδ

max, we will use the following solution formula.

ψ(t) = e−A2(t−δ)ψδ +
∫ t−δ

0

Ae−A2s
(
λ′(ψ)ϑ− Φ′(ψ)

)
(t− s) ds, t ∈ Jδ

max

where ψδ := ψ(δ). Differentiating with respect to t, we obtain

∂tψ(t) = A

∫ t−δ

0

e−A2s(λ′′(ψ)ϑ∂tψ + λ′(ψ)∂tϑ− Φ′′(ψ)∂tψ)(t− s) ds

+ F (t, ψδ, ϑδ), (6.8)



32 J. Prüss and M. Wilke

for all t ≥ δ and with

F (t, ψδ, ϑδ) := Ae−A2(t−δ)(λ′(ψδ)ϑδ − Φ′(ψδ))−A2e−A2(t−δ)ψδ.

Let us discuss the function F in detail. By the trace theorem we have ψδ ∈
B

4−4/p
pp (Ω) and ϑδ ∈ B

2−2/p
pp (Ω). Since we assume p > (n + 2)/2, it holds that

ψδ, ϑδ ∈ L∞(Ω). Furthermore, the semigroup e−A2t is analytic. Therefore there
exist some constants C > 0 and ω ∈ R such that

|F (t, ψδ, ϑδ)|Lp(Ω) ≤ C

(
1

(t− δ)1/2
+

1
t− δ

)
eωt,

for all t > δ. This in turn implies that

F (·, ψδ, ϑδ) ∈ Lp(Jδ′

max × Ω)

for all p ∈ (1,∞), where 0 < δ < δ′ < Tmax. We will now use equations (5.1)1,2 to
rewrite the integrand in (6.8) in the following way.

(λ′′(ψ)ϑ− Φ′′(ψ))∂tψ + λ′(ψ)∂tϑ

= (λ′′(ψ)ϑ− Φ′′(ψ))∆µ+
λ′(ψ)
b′(ϑ)

∆ϑ− λ′(ψ)2

b′(ϑ)
∆µ

= div
[(
λ′′(ψ)ϑ− λ′(ψ)2

b′(ϑ)
− Φ′′(ψ)

)
∇µ

]
+ div

[
λ′(ψ)
b′(ϑ)

∇ϑ
]

(6.9)

−∇
(
λ′′(ψ)ϑ− λ′(ψ)2

b′(ϑ)
− Φ′′(ψ)

)
· ∇µ−∇λ

′(ψ)
b′(ϑ)

· ∇ϑ.

Thus we obtain a decomposition of the following form

(λ′′(ψ)ϑ− Φ′′(ψ))∂tψ + λ′(ψ)∂tϑ

= div(fµ∇µ+ fϑ∇ϑ) + gµ∇µ+ gϑ∇ϑ+ hµ∇ϑ∇µ+ hϑ|∇ϑ|2,

with

fµ := λ′′(ψ)ϑ− λ′(ψ)2

b′(ϑ)
− Φ′′(ψ), fϑ :=

λ′(ψ)
b′(ϑ)

,

gµ := −
(
λ′′′(ψ)ϑ− 2

λ′(ψ)λ′′(ψ)
b′(ϑ)

− Φ′′(ψ)
)
∇ψ, gϑ := −λ

′′(ψ)
b′(ϑ)

∇ψ,

hµ := λ′′(ψ)− b′′(ϑ)λ′(ψ)2

b′(ϑ)2
, hϑ :=

b′′(ϑ)λ′(ψ)
b′(ϑ)2

.

By Assumption (H3) and the first part of the proof it holds that fj , gj , hj ∈
L∞(Jδ

max × Ω) for each j ∈ {µ, ϑ} and this in turn yields that

div(fµ∇µ+ fϑ∇ϑ) ∈ L2(Jδ
max;H

1
2 (Ω)∗),

gµ · ∇µ+ gϑ · ∇ϑ ∈ L2(Jδ
max × Ω),

hµ∇ϑ · ∇µ+ hϑ|∇ϑ|2 ∈ L1(Jδ
max × Ω),
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where we also made use of (4.6). Setting

T1 = Ae−A2t ∗ div(fµ∇µ+ fϑ∇ϑ), T2 = Ae−A2t ∗ (gµ · ∇µ+ gϑ · ∇ϑ)

and
T3 = Ae−A2t ∗ (hµ∇ϑ · ∇µ+ hϑ|∇ϑ|2),

we may rewrite (6.8) as

∂tψ = T1 + T2 + T3 + F (t, ψ0, ϑ0).

Going back to (6.8) we obtain

T1 ∈ H1/4
2 (Jδ

max;L2(Ω)) ∩ L2(Jδ
max;H

1
2 (Ω)) ↪→ L2(Jδ

max × Ω),

T2 ∈ H1/2
2 (Jδ

max;L2(Ω)) ∩ L2(Jδ
max;H

2
2 (Ω)) ↪→ L2(Jδ

max × Ω), and

F (·, ψδ, ϑδ) ∈ L2(Jδ′

max × Ω).

Observe that we do not have full regularity for T3 since A has no maximal regularity
in L1(Ω), but nevertheless we obtain

T3 ∈ H1/2−
1 (Jδ

max;L1(Ω)) ∩ L1(Jδ
max;H

2−
1 (Ω)).

Here we used the notation Hs−
p := Hs−ε

p and ε > 0 is sufficiently small. An
application of the mixed derivative theorem then yields

H
1/2−
1 (Jδ

max;L1(Ω)) ∩ L1(Jδ
max;H

2−
1 (Ω)) ↪→ Lp(Jδ

max;L2(Ω)),

if p ∈ (1, 8/7), whence

∂tψ ∈ L2(Jδ′

max × Ω) + Lp(Jδ′

max;L2(Ω))

for some 1 < p < 8/7. Now we go back to (6.9) where we replace this time only
∂tϑ by the differential equation (5.1)2 to obtain

(λ′′(ψ)ϑ− Φ′′(ψ))∂tψ + λ′(ψ)∂tϑ

=
(
λ′′(ψ)ϑ− Φ′′(ψ)− λ′(ψ)2

b′(ϑ)

)
∂tψ

+ div
[
λ′(ψ)
b′(ϑ)

∇ϑ
]
− λ′′(ψ)

b′(ϑ)
∇ψ · ∇ϑ+

λ′(ψ)b′′(ϑ)
b′(ϑ)2

|∇ϑ|2

= f∂tψ + div [g∇ϑ] + h · ∇ϑ+ k|∇ϑ|2.
Rewrite (6.8) in the following way

∂tψ = S1 + S2 + S3 + S4 + F (t, ψ0, ϑ0), (6.10)

where the functions Sj are defined in the same manner as Tj . Since f, g, h ∈
L∞(Jδ

max × Ω) it follows again from regularity theory that

S1 ∈ H1/2
2 (Jδ′

max;L2(Ω)) ∩ L2(Jδ′

max;H
2
2 (Ω))

+H1/2
p (Jδ′

max;L2(Ω)) ∩ Lp(Jδ′

max;H
2
2 (Ω)),

S2 ∈ H1/4
2 (Jδ′

max;L2(Ω)) ∩ L2(Jδ′

max;H
1
2 (Ω)),
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S3 ∈ H1/2
2 (Jδ′

max;L2(Ω)) ∩ L2(Jδ′

max;H
2
2 (Ω)),

and it can be readily verified that

H1/2
p (Jδ′

max;L2(Ω)) ∩ Lp(Jδ′

max;H
2
2 (Ω)) ↪→ L2(Jδ′

max × Ω),

whenever p ∈ [1, 2]. Now we turn our attention to the term S4 = Ae−A2t ∗ k|∇ϑ|2.
First we observe that by the mixed derivative theorem the embedding

Zq := H1/2−
q (Jδ′

max;L1(Ω)) ∩ Lq(Jδ′

max;H
2−
1 (Ω)) ↪→ L2(Jδ′

max × Ω)

is valid, provided that q ∈ (8/5, 2]. Hence it holds that

|S4|2,2 ≤ C|S4|Zq
≤ C|k|∇ϑ|2|q,1 ≤ C|∇ϑ|22q,2,

with some constant C > 0. Taking the norm of ∂tψ in L2(Jδ′

max × Ω) we obtain
from (6.10)

|∂tψ|2,2 ≤ C

 3∑
j=1

|Sj |2,2 + |∇ϑ|22q,2 + |F (·, ψδ, ϑδ)|2,2

 .

The Gagliardo-Nirenberg inequality in connection with (4.6) yields the estimate

|∇ϑ|22q,2 ≤ c|∇ϑ|2a
2,2|∇ϑ|

2(1−a)
∞,2 ≤ c|∇ϑ|2(1−a)

∞,2 ,

provided that a = 1/q. Multiply (4.1)2 by ∂tϑ and integrate by parts to the result∫
Ω

b′(ϑ(t, x))|∂tϑ(t, x)|2 dx+1
2
d

dt
|∇ϑ(t)|22 = −

∫
Ω

λ′(ψ(t, x))∂tψ(t, x)∂tϑ(t, x) dx.

Making use of (H3) and Young’s inequality we obtain

C1|∂tϑ|22,2 +
1
2
|∇ϑ(t)|22 ≤ C2(|∂tψ|22,2 + |∇ϑ0|22), (6.11)

after integrating w.r.t. t. This in turn yields the estimate

|∇ϑ|22q,2 ≤ c|∇ϑ|2(1−a)
∞,2 ≤ c(1 + |∂tψ|2(1−a)

2,2 ).

In order to gain something from this inequality we require that 2(1 − a) < 1, i.e.
q is restricted by 1 < q < 2. Finally, if we choose q ∈ (8/5, 2) and use the uniform
boundedness of the L2 norms of Sj , j ∈ {1, 2, 3} we obtain

|∂tψ|2,2 ≤ C(1 + |∂tψ|2(1−a)
2,2 ).

Since by construction 2(1− a) < 1, it follows that the L2-norm of ∂tψ is bounded
on Jδ′

max × Ω. In particular, this yields the statement for ϑ by equation (6.11).
Now we go back to (6.8) with δ replaced by δ′. By Assumption (H5), by the

bounds ∂tϑ, ∂tψ ∈ L2(Jδ′

max;L2(Ω)) and by the first part of the proof we obtain

λ′′(ψ)ϑ∂tψ + λ′(ψ)∂tϑ− Φ′′(ψ)∂tψ ∈ L2(Jδ′

max;L2(Ω)).

Since the operator A2 = ∆2 with domain

D(A2) = {u ∈ H4
p (Ω) : ∂νu = ∂ν∆u = 0}
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has the property of maximal Lp-regularity (cf. [6, Theorem 2.1]), we obtain from
(6.8)

∂tψ − F (·, ψδ′ , ϑδ′) ∈ H1/2
2 (Jδ′

max;L2(Ω)) ∩ L2(Jδ′

max;H
2
2 (Ω)) ↪→ Lr(Jδ′

max;Lr(Ω)),

and the last embedding is valid for all r ≤ 2(n + 4)/n. By the properties of the
function F it follows

∂tψ ∈ Lr(Jδ′′

max;Lr(Ω)),

for all r ≤ 2(n + 4)/n and some 0 < δ′′ < Tmax. To obtain an estimate for the
whole interval Jmax, we use the fact that we already have a local strong solution,
i.e. ∂tψ ∈ Lp(0, δ′′;Lp(Ω)), p > (n+ 2)/2. The proof is complete.
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graphs in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1995. Abstract linear
theory.

[4] M. Brokate and J. Sprekels. Hysteresis and phase transitions, volume 121 of Applied
Mathematical Sciences. Springer-Verlag, New York, 1996.

[5] R. Chill. On the Lojasiewicz-Simon gradient inequality. J. Funct. Anal., 201(2):572–
601, 2003.

[6] R. Denk, M. Hieber, and J. Prüss. Optimal Lp-Lq-estimates for parabolic boundary
value problems with inhomogeneous data. Math. Z., 257(1):193–224, 2007.

[7] E. DiBenedetto. Degenerate parabolic equations. Universitext. Springer-Verlag, New
York, 1993.

[8] E. Feireisl and G. Schimperna. Large time behaviour of solutions to Penrose-Fife
phase change models. Math. Methods Appl. Sci., 28(17):2117–2132, 2005.

[9] M. Kubo, A. Ito, and N. Kenmochi. Well-posedness and attractors of phase transition
models with constraint. In Proceedings of the Third World Congress of Nonlinear
Analysts, Part 5 (Catania, 2000), volume 47, pages 3207–3214, 2001.
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