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Abstract. In this paper we investigate quasilinear parabolic systems of con-
served Penrose-Fife type. We show maximal L, - regularity for this problem
with inhomogeneous boundary data. Furthermore we prove global existence
of a solution, provided that the absolute temperature is bounded from below
and above. Moreover, we apply the Lojasiewicz-Simon inequality to establish
the convergence of solutions to a steady state as time tends to infinity.
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1. Introduction and the Model

We are interested in the conserved Penrose-Fife type equations
O = Ap, p= A+ (W)~ N@WW, tel zeq,
O (b(V) +A(¥)) — A9 =0, teJ xe,

where ¥ = 1/6 and 6 denotes the absolute temperature of the system, 1 is the
order parameter and  C R” is a bounded domain with boundary 9Q € C*.
The function @' is the derivative of the physical potential, which characterizes
the different phases of the system. A typical example is the double well potential
®(s) = (s> — 1)? with the two distinct minima s = £1. Typically, the nonlinear
function A is a polynomial of second order.

For an explanation of (1.1) we will follow the lines of ALT & PawLow [2] (see
also BROKATE & SPREKELS [4, Section 4.4]). We start with the rescaled Landau-
Ginzburg functional (total Helmholtz free energy)

f<w,9>—/9(”2(z)|v@b2+f“/;’9)> dar,

(1.1)
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where the free energy density F(¢,0) := @|V¢|2 + f(,0) is rescaled by 1/6.
The reduced chemical potential p is given by the variational derivative of F with
respect to v, i.e.

oF 1 of (¢, 0)
=—(,0) == —(0)A —_— -
p=5r w0 = 5 (—av+ 20
Assuming that v is a conserved quantity, we have the conservation law

Here j is the flux of the order parameter 1, for which we choose the well accepted
constitutive law j = —Vyu, i.e. the phase transition is driven by the chemical
potential p (see [4, (4.4)]). The kinetic equation for ¢ thus reads

of (v, 9)>

oY =Ap, p= % <’Y(9)A¢ + v

If the volume of the system is preserved, the internal energy e is given by the
variational derivative

dF(,0)

5(1/0)

This yields the expression

00 2 00
It can be readily checked that the GIBBS relation

B OF (1), 0)
(,0) = F(1,0) = ==

holds. If we assume that no mechanical stresses are active, the internal energy e
satisfies the conservation law

o(,0) = fw,0) — 020 1 (7(9) - HW) VP,

Oge + divg = 0,

where ¢ denotes the heat flux of the system. Following ALT & PAwLOW [2], we
assume that ¢ =V (%), so that the kinetic equation for e reads

1

Let us now assume that y(0) = 6 and f(¢),0) = 09(v)) — A(¢) — flog6. In this
case we obtain e = § — A\(¢) and

p= A+ 8 () - N W),
hence system (1.1) for ¢ = 1/6 and b(s) = —1/s, s > 0. Suppose (j|v) = (q|v) =0
on 90 with v = v(z) being the outer unit normal in z € 9. This yields the
boundary conditions d,u = 0 and 9,9 = 0 for the chemical potential p and the
function 9, respectively. Since (1.1) is of fourth order with respect to the function 1
we need an additional boundary condition. An appropriate and classical one from
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a variational point of view is 0,1 = 0. Finally, this yields the initial-boundary
value problem

oY —Ap=fi, p=-AYp+d' () =N, tel zec,
O (b(9) + A(W)) =AY = fo, teJ, zel,

Ot = g1, Oth = go, 00 =g3, t€J, v €,
Y(0) = 1o, ¥(0) =19y, t=0, z €Q,

The functions f;, gj, %o, ¥, ®, A and b are given. Note that if § has only a small
deviation from a constant value 6, > 0, then the term 1/6 can be linearized
around 6, and (1.2) turns into the nonisothermal Cahn-Hilliard equation for the
order parameter ¢ and the relative temperature 6 — 6., provided b(s) = —1/s.

In the case of the Penrose-Fife equations, BROKATE & SPREKELS [4] and
ZHENG [18] proved global well-posedness in an Ly-setting if the spatial dimension is
equal to 1. SPREKELS & ZHENG showed global well-posedness of the non-conserved
equations (that is 910 = —p) in higher space dimensions in [16], a similar result can
be found in the article of LAURENCOT [10]. Concerning asymptotic behavior we
refer to the articles of Kuo, ITO & KENMOCHI [9], SHEN & ZHENG [15], FEIREISL
& SCHIMPERNA [8] and RoccA & SCHIMPERNA [13]. The last two authors studied
well-posedness and qualitative behavior of solutions to the non-conserved Penrose-
Fife equations. To be precise, they proved that each solution converges to a steady
state, as time tends to infinity. SHEN & ZHENG [15] established the existence of
attractors for the non-conserved equations, whereas KuBo, IT0 & KENMOCHI [9]
studied the non-conserved as well as the conserved Penrose-Fife equations. Beside
the proof of global well-posedness in the sense of weak solutions they also showed
the existence of a global attractor. Finally, we want to mention that the physical
potential ® may also be of logarithmic type, such that ®’(s) has singularities
at s = £1. This forces the order parameter to stay in the physically reasonable
interval (—1,1), provided that the initial value ¥ (0) = ¢y € (—1,1). In general,
such a result cannot be obtained in the case of the double well potential, since
there is no maximum principle available for the fourth order equation (1.2),. For
a result on global existence, uniqueness and asymptotic behaviour of solutions of
the Cahn-Hilliard equation in case of a logarithmic potential, we refer the reader
to ABELS & WILKE [1]. However, in this paper we will only deal with smooth
potentials.

In the following sections we will prove well-posedness of (1.2) for solutions in
the maximal L,-regularity classes

(NS H;(J§ Lp(Q)) N Ly (J; H{f(Q)),

0 € Hy(J; Ly(Q)) N Ly(J5 Hp (),
where J = [0,T], T > 0. In Section 2 we investigate a linearized version of (1.2) and
prove maximal L,-regularity. Section 3 is devoted to local well-posedness of (1.2).
To this end we apply the contraction mapping principle. In Section 4, we show
that the solution exists globally in time, provided that the absolute temperature

(1.2)



4 J. Priss and M. Wilke

¥ is uniformly bounded from below and above. Finally, in Section 5, we study the
asymptotic behavior of the solution to (1.2) as ¢ — oo. The Lojasiewicz-Simon
inequality will play an important role in the analysis.

2. The Linear Problem
In this section we deal with a linearized version of (1.2).
Ou+ A%+ A(qv) = f1, teld, zeq,
00 — agAv +m0iu = fo, t€ J, x €,
O Au+ 0, (mv) =¢g1, teJ, xed, (2.1)
ou=gs, Ov=g3, teJ xecdf,
u(0) = up, v(0) =vg, t=0, z €.
Here n1 = m (), n2 = n2(x), a0 = ag(x) are given functions such that
m € By 4P(Q), mo € B Y/P(Q) and  ag € C(Q). (2.2)

We assume furthermore that ag(z) > o > 0 for all € Q and some constant o > 0.
Hence equation (2.1), does not degenerate. We are interested in solutions

u € Hy(J; Ly(Q) N Ly (J; Hy () =: Ey(T)
and
v € Hy(J; Lp(Q)) N Ly(J; H2 () =: E(T)
of (2.1). By the well-known trace theorems (cf. [3, Theorem 4.10.2])

E\(T) = C(J; By, */P(Q)) and Ex(T) — C(J; B *7(Q),  (2.3)
we necessarily have ug € B3;4/p(Q) = X! v € B;;Q/p(Q) =: X2 and the
compatibility conditions

0y Aug + 0, (mvo) = gilt=0, Do = g2lt—0, as well as  J,v9 = g3li—o0,
whenever p > 5, p > 5/3 and p > 3, respectively (cf. [6, Theorem 2.1]). In the
sequel we will assume that p > (n + 2)/2 and p > 2. This yields the embeddings
B 4P(Q) — H2(Q) N CY(Q) and B2, 2/7(Q) — H(Q) N C(Q).
We are going to prove the following theorem.
Theorem 2.1. Let n € N, Q C R" a bounded domain with boundary 0 € C*
and let p > (n+2)/2, p > 2, p # 3,5. Assume in addition that m € B;‘;Mp(Q),
M2 € Bg;Q/p(Q) and ag € C(Q), ag(z) > o > 0 for all x € Q. Then the linear
problem (2.1) admits a unique solution
(u,v) € Hy(Jos Ly(Q)%) N Ly(Jo; (H,,(Q) x Hp (),
if and only if the data are subject to the following conditions.
1. fl, f2 S Lp(Jo; LP(Q)) = X(Jo),
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g1 € WV (Jo; Ly (09)) N Ly (Jo: Wy~ /P(09)) = 1
g2 € Wi TP (s Ly (092)) 0 Ly (Jos W™ V/P(092)) = Ya(Jo),
g3 € Wy 27V (Jo; Ly(89)) N Ly (Jo; W~ /P (09)) = Y3

uo € By P(Q) = X1, vy € By 2/P(Q) = X2,

Oy, Aug + 9, (mvg) = g1lt=0, p > 5,

Oytig = golt=0, Opvo = gslt=0, p > 3.

No o o

Proof. Suppose that the function v € E1(T) in (2.1) is already known. Then in a
first step we will solve the linear heat equation

0w — agAv = fo — n90yu, (2.4)

subject to the boundary and initial conditions d,v = g3 and v(0) = wvg. By the
properties of the function ag we may apply [6, Theorem 2.1] to obtain a unique

solution v € E5(T) of (2.4), provided that fo € L,(J x Q), vy € le;z/p(Q)’
g3 € W21 (J5 Ly (09)) N Ly (J; WP (0Q)) =: Y3(J),

and the compatibility condition 9,vg = g3|t=o if p > 3 is valid. The solution may
then be represented by the variation of parameters formula

t
o(#) = v (£) — / = AU=5) 0 u(s) ds, (2.5)
0
where A denotes the L,-realization of the differential operator A(z) = —ao(z)Ay,
— At

Ay means the Neumann-Laplacian and e stands for the bounded analytic
semigroup, which is generated by —A in L,(f2). Furthermore the function v; €
E5(T) solves the linear problem

atvl — G/()Avl = f27 al/vl = g3, Ul(o) = vo-

We fix a function w* € E1(T) such that w*|;—¢p = up and make use of (2.5) and
the fact that (u — w*)|t=o = 0 to obtain

v(t) = vy (t) +va(t) — (O + A) " ne0s(u — w*)
with vg(t) := — fot e~ A=), 9pw*. Set v* = vy + vy € Ey(T) and
F(u) = —(0y + A) " 'n20, (u — w*).
Then we may reduce (2.1) to the problem
o+ A%u=AG(u)+ f1, teJ, zecQ,
O Au=0,G(u)+g¢g1, tedJ, xe€d,
Ou=go te€J, xcodQ,
u(0) =ug, t=0, x €9,
where G(u) := —n1 (F(u) + v*). For a given T € (0, Tp] we set
oF1(T) ={u € E1(T) : ult=o = 0}
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and
Bo(T) = X(T) x Yi(T) x Y(T)
oEo(T) :=={(f,9,h) € Eo(T) : gli=0 = hli=0 = 0},

where X (T) := L,((0,T) x Q),

Yi(T) = WA= (0, T; L,(09)) N L, (0, T3 Wi —/7(09)),
and

Ya(T) = W3/A=142 (0, T; L,(09)) N Ly (0, T; WE1/P(09)).
The spaces F1(T) and Ey(T') are endowed with the canonical norms |-|; and |- |,
respectively. We introduce the new function 4 := v — w* € E1(T) and we set

F(@) == —(0; + A) "oy
as well as G (@) := —n F (). If u € Ey(T) is a solution of (2.6), then the function
u €9FE1(T) solves the problem
1, t e J, x € Q,
g1, teJ, xe o,
=go teJ xed,
a(0) =0, t=0, z€Q,
with the modified data
fii=f1— A(mv*) — duw* — A?w* € X(T),
g1 := g1 — Oy(nv™) — 0, Aw* €Y1 (T),
and
gg =go — &,w* EQYQ(T).
Observe that by construction we have g1|(=p = 0 and ga|(=9 = 0 if p > 5 and
p > 5/3, respectively.

Let us estimate the term AG(u) in L,(J; L,(Q)), where u € oFy(T). We
compute

IAG ()1, (71, @) < [F@)AM|L, (51, @)
+ 2/(VEW)|Vn)|r, (50,0 + ImAF ()1, 1L, 9))-
Since m; € By 4/p (©) does not depend on the variable ¢, we obtain
() A, iz, 2) < 1AM |, @) F ()| 2,720,

(VE@) V)2, 50,0 < V@ | VE@)| L, (51, @)
and R ~
ImAF (W)L, 7:L,0) < ML @ AF (W)L, (11, @)-
Therefore we have to estimate F'(u) for each u € oE1(T) in the topology of the
spaces Ly(J; Loo(2)) and Ly, (J; H2()). Let u € gEy and recall that F'(u) is defined
by F(u) = —(d;+A) ™ 120,u. The operator (9;+A)~" is a bounded linear operator
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from L, (J; Ly(2)) to o H) (J; Ly()) N Ly(J; H3 (Q)) =0 E»(T). Moreover, by the
trace theorem and by Sobolev embedding, it holds that

0H, (J; Lp() N Ly(J; Hy (Q) — C(J; By, 2P (Q)) — C(J;:C(Q)).

Note that the bound of (9; + A)~! as well as the embedding constant do not
depend on the length of the interval J = [0,T] C [0,Tp] = Jo, since the time trace
at t = 0 vanishes. With these facts, we obtain

(0 + A) 'm0l 1, (151 () < TYV?|(0r + A) 20l (g0 @)
<TY°C|(9, + A) " bl gy 1)
< TY*Clnadyulr, (.1, ()
< TYPC\nal 1 (o lul gy 1)

To estimate F'(u) in Ly (J; HZ(€2)) we need another representation of F(u). To be
precise, we rewrite F'(u) as follows

F(u) = — (0, + A) " tpdyu = -0 2(9, + A) 710} (o).

This is possible, since u € oE1(T). Now observe that for each u €¢E; it holds that
Nou GOHSM(J; H}(9)). This can be seen as follows. First of all, it suffices to show
that nou € Ly(J; H(£2)), since 7, does not depend on the variable ¢. But

Imeulr, (rmi0) < M2Vulr, i) + [uVnelr,;0,@)
<C (|772\LOO(Q)|U|E1(T) + |U\LP(J;LOO(Q))\772|H;(Q))
< Clulp, 2| gz=2/r gy
and this yields the claim, since
w €0H(J; Ly(Q) N Ly(J; Ha(Q)) <o HY*(J; HL(Q)),

by the mixed derivative theorem. It follows readily that 8151 /2 (nou) € OH; / YJ:H 2 ()
and

(00 + A) (I + A)M20," (yu) €0 HY/(J; L, () No Hy/*(J; HE ().

Since the operator (I +A)'/2 with domain D((I+ A)"/?) = H}(Q) commutes with
the operator (9; + A)~1, this yields

(00 + 4)710, () €0 HY/ (73 Hy () NoHy (T H} ()

for each fixed u € oE1(T). By the mixed derivative theorem we obtain furthermore
oHy (5 Hy (9)) No Hy/* (J; Hy () = o Hy/* (J; Hy (2)-

Therefore

Fu) = —0,"(8, + A) 18} % (nau) €0 HY4(J; HA(R)),
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and there exists a constant C' > 0 being independent of 7' > 0 and u € ¢ E1(T)
such that

|F(U)|H;/4(J;H§(Q)) < C|U|E1(T)7

for each u € gE1(T). In particular this yields the estimate

|E ()| L, (gmz(0) < T1/2p|ﬁ(u)|L2p(J;H§(Q))

< T1/2p|ﬁ(“)|Hé/4(J;H§(sz)) < T1/2p0|“|E1(T)>

by Hélders inequality and C' > 0 does not depend on the length T' of the interval
J. We have thus shown that

|AG(U)| L, (1L, < 1 (T)Clulg, (1),
where we have set p; (T) := T/?P(14T"/?P). Observe that u;(T) — 0 as T — 0.
The next step consists of estimating the term 9,G(u) in 0W5/471/4P(J; L,(09))N
L,(J; Wpl‘l/”(asz)). To this end, we recall the trace map
0H, 2 (5 Ly(2)) 0 Lp(J; Hy () < oW,/ "=V (; Ly(99)) 0 L(J; W, 17 (09))
for the Neumann derivative on 9f2. Therefore, by the results above, it remains to
estimate G(u) in OH;/Q(J; L,(£2)). By the complex interpolation method we have

1/2 1/2
0l S O i)W i, )

for each w € o H}(J; Ly(£2)), and C > 0 does not depend on T' > 0. Using Hélders
inequality, this yields

Tl ol

‘w|H;/ 2Ly @) = Loy (J3Lp (@)W HL (J5L,,(92))

< TY*Clw| g (i1, (@) -
Finally we obtain the estimate
|é(“)|H;/Q(J;LP(Q)) < T1/2p|n1|Loo(Q)C|u|]El(T)7
which in turn implies
10,G(u)]yy () < |G(U)|H;/2(J;LP(Q)) +1G (W)L, (5m20) < p2(T)Clulg, (1),

where po(T) := T'/*P(14T"/*?) and py(T) — 04 as T — 0. Define two operators
L,B :gE1(T) —oEy(T) by means of

Ou + A?u AG(u)
Lu = 0, Au and Bu = |9,G(u)
o, u 0

With these definitions, we may rewrite (2.7) in the abstract form

Lu=Bu+f, f:=(f1,41,G2) €oEo(T).
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By [6, Theorem 2.1], the operator L is bijective with bounded inverse L~!, hence
u €9F1(T) is a solution of (2.7) if and only if (I — L™ B)u = L= f. Observe that
L7!B is a bounded linear operator from ¢E;(T) to oE1(T) and

|L™' Bulp, (ry < |L7 (5o (), 51 (7)) | Bl 5o () < (111(T) + p2(T))Clul g, (1)-

Here the constant C' > 0 as well as the bound of L~! are independent of T > 0.
This shows that choosing T' > 0 sufficiently small, we may apply a Neumann series
argument to conclude that (2.7) has a unique solution u € ¢F1(T") on a possibly
small time interval J = [0, T. Since the linear system (2.7) is invariant with respect
to time shifts, we may set J = Jp. (]

3. Local Well-Posedness

In this section we will use the following setting. For T > 0, to be fixed later, and
a given T € (0,Tp] we define
]El(T) = El(T) X EQ(T), O]El(T) = {(U,’U) S El(T) : (U,’U)|t=0 = O}
and
Eo(T) := X(T) x X(T) x Y1(T) x Yo(T) x Y5(T),

as well as

oEo(T) == {(f1, f2, 91,92, 93) € Eo(T) : g1lt=0 = g2lt=0 = g3]t=0 = 0},

with canonical norms |- |; and | - |o, respectively. The aim of this section is to find
a local solution (¢,9) € E{(T) of the quasilinear system

Ob—Au=fi, p=—Ap+d W) - NWW, tel req,
O (b() +A(W)) — AV = fa, t€J z€Q,
Oupt = g1, O = g2, 0,0 =g3, te€J, xe€d,
P(0) =g, ¥(0) =%y, t=0, z€Q.
To this end, we will apply Banach’s fixed point theorem. For this purpose let

p > (TL+2)/27 p 2 2a f17f2 S X(To), 9j S }/j(OaTO)7 ] = 172737 1/)0 S X% and
Yo € X,% be given such that the compatibility conditions

0y Athg — 0,9 (o) + 0, (N (¥0)V0) = —91lt=0, Outbo = g2lt—0 and I,¥y = g3|i=o

are satisfied, whenever p > 5, p > 5/3 and p > 3, respectively. In the sequel
we will assume that A\, ¢ € C*~(R), b € C37(0,00) and ¥'(s) > 0 for all s > 0.
Note that by the Sobolev embedding theorem we have ¥y € C(2) as well as
V' (99) € C(Q2). Since ¥ represents the inverse absolute temperature of the system,
it is reasonable to assume Ug(z) > 0 for all € Q. Therefore, there exists a
constant ¢ > 0 such that Jo(z),d (o(z)) > o > 0 for all z € Q. We define
ap(z) := 1/b' (Jo(x)), m(x) = N (¢o(x)) and ne(x) = ag(z)n1(x). By assumption,
it holds that ag € Bay /2(Q), m1 € Bpyp /P(Q) and n, € By /P(), cf. [14, Section
4.6 & Section 5.3.4].

(3.1)
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Thanks to Theorem 2.1 we may define a pair of functions (u*,v*) € E1(Tp)
as the solution of the problem

ou* + A%t + A(mo*) = f1, te] ], = €9,
OV — agAv* + 0™ = apfa, t €[0,Tp], x € £,
[0, To]
[0, To]

81/AU* + au(nlv*) = —01— eiB2t903 te OaTO , T € aQa (3 2)
ou* =g, te[0,Tp], x € 09, .
Ov* =g3, te€[0,Tp], x € 09,
u*(0) =, v*(0) =y, t=0, z €,
where B = —Apq is the Laplace-Beltrami operator on 0f2 and e~ B i the analytic

semigroup which is generated by —B2. Furthermore gy = 0 if p < 5 and gg =
—g1lt=0 — (0, Q%o + 0, (mVo)) if p > 5.
Define a linear operator L :oEq (Ty) — 0Eo(T0o) by

Ou + A%u + n Av
O — agAv + n20iu
L(u,v) = O Au+ 9, (mv)
o,u
o,v

Then, by Theorem 2.1, the operator L : gE1(Ty) — oEo(Tp) is bounded and bijec-
tive, hence an isomorphism with bounded inverse L.=!. For all (u,v) € oE{(T) we
set

Gr(u,v) = (N (o) = N (w))v + @' (u),
Ga(u,v) = (ag\ (vo) — a(v) N (u))du — (ap — a(v))Av — (ag — a(v)) fa,
where a(v(t,z)) = 1/b/(v(t,z)) and ay = a(¥). Lastly we define a nonlinear
mapping G : E1(T) xoE1(T) —oEo(T) by

AG:(u+u*,v+v*)
Gao(u+u*,v+v%)
G((u*,v"); (u,v)) = |0,G1(u+u*,v+v*) —go| ,
0
0

where go =0 if p < 5 and gy = e*B%&,Gl(@bo,ﬁo) if p > 5. Then it is easy to see
that ¥ = u+u* € E1(T) and 9 = v +v* € E5(T) is a solution of (1.2) if and only
if
L(u,v) = G((u”,v"); (u, v))
or equivalently
(u,v) = LilG((U*’ v"); (u,v)).

In order to apply the contraction mapping principle we consider a ball Br =
B}, x B% CoE;(T), where R € (0, 1]. Furthermore we define a mapping 7 : B —
oE1(T) by T (u,v) = L71G((u*,v*); (u,v)). We shall prove that TBr C By and
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that 7 defines a strict contraction on Bg. To this end we define the shifted ball
Br(u*,v*) = BL(u*) x B%(v*) C E{(T) by

Br(u*,v*) = {(u,v) € B4 (T) : (u,v) = (@,0) + (u*,v*), (4,0) € Br}.

To ensure that the mapping G5 is well defined, we choose Ty > 0 and R > 0
sufficiently small. This yields that all functions v € B%(v*) have only a small
deviation from the initial value 9. To see this, write

[o(z) —v(t, )| < [Wo(x) — v (¢, 2)| + [v"(t,2) —v(t, 2)| < u(T) + R,
for all functions v € B%(v*), where p = pu(T) is defined by

T) = *(t — 9 .
w(T) (t7$)33§}xﬂlv(7w) o(2)]

Observe that u(T) — 0 as T — 0, by the continuity of v* and ¥y. This in turn
implies that v(¢t,z) > ¢/2 > 0 and ¥ (v(t,z)) > o/2 > 0 for (t,z) € [0,7] x Q
and all v € B%(v*), with Ty > 0, R > 0 being sufficiently small. Moreover, for all
v,0 € B%(v*) we obtain the estimates

a(Jo(x)) — a(v(t, z))| < Cldo(z) — v(t, z)| (3.3)
and
la(v(t,x)) — a(v(t,z))| < Clo(t,x) — v(t, z)], (3.4)

valid for all (t,x) € [0,T] x Q, with some constant C' > 0, since ¥’ is locally
Lipschitz continuous.

The next proposition provides all the facts to show the desired properties of
the operator 7.

Proposition 3.1. Letn € N and p > (n+2)/2, p > 2, b e C*>(0,00), V/'(s) > 0
for all s > 0, \,® € C*~(R) and Yo(x) > 0 for all x € Q. Then there exists a
constant C > 0, independent of T, and functions p; = p;(T) with p;(T) — 0 as
T — 0, such that for all (u,v), (@,v) € Br(u*,v*) the following statements hold.

L JAG:(u,v) = AGy(a, 0)|x (1) < (pa(T) + R)|(u, v) = (@,0)[g, (1)

2. |Ga(u,v) = G2(1, 0)| x (1) < Clpa(T) + R)|(u,v) — (@, 0) |, (1)

3. 10,G1(u,v) = 9,G1(u, V) ly, (1) < Cpa(T) + R)|(u, v) = (4, 0) g, (1)-

The proof is given in the Appendix.

It is now easy to verify the self-mapping property of 7. Let (u,v) € Bg. By
Proposition 3.1 there exists a function p = pu(7T) with u(T) — 0 as T — 0 such
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that
T (u, )1 = [L7HG((u,0"), (w,0) [ < [LHIG((u,0"), (u,0))]o
< O(IG((u",v"), (u,0)) = G((u",v7), (0,0))o + [G((u", v7), (0,0))[o)
< O(|AG(u+u*, v +v") = AGy (u*,v™) | x (1)
+ G2 (u+u™, v +0v*) — Ga(u*,v")| x (1)
+10,G1(u+u*,v+v*) = 0,G1(u",v")|y, (1)
+ |G ((w",07),(0,0))lo)
< CT) + R)|(u,v)|1 + |G((u*,v7),(0,0))]o
< C(u(T) + R)R + |G((u",v7),(0,0))[o.
Hence we see that TBr C Bp if T' and R are sufficiently small, since G((u*,v*), (0,0))
is a fixed function. Furthermore for all (u,v), (4,7) € B we have
|T(ua U) - T(ﬂa 'D)|1 = ‘L_l(G((U*v U*)7 (uv U)) - G((U*’ U*)7 (’17,, T))))ll
< [LTHIG((w",v"), (u, ) = G((u*,v7), (4, 9))]o
< C(AG1(u+u™, v +v") = AGL(u +u", v+ v")|x (1)
+10,G1(u+u*, v +v") = 0,G1(u + v, 0+ v")|y, (1)
+1Gao(u +u”, v 4+v") = Go(u +u™, 0+ v")| x (1))
< C(u(T) + R)|(u, v) — (@, 0) 1.
Thus 7 is a strict contraction on Bg, if T" and R are again small enough. Therefore
we may apply the contraction mapping principle to obtain a unique fixed point
(u,7) € Bg of 7. In other words the pair (¢,9) = (@ + u*, 0 + v*) € E(T) is the
unique local solution of (1.2). We summarize the preceding calculations in
Theorem 3.2. Letn €N, p> (n+2)/2, p>2, p#3,5, b C3(0,00), b'(5) >0
for all s > 0 and let \,® € C*~(R). Then there exists an interval J = [0,T] C
[0,To] = Jo and a unique solution (¥,9) of (1.2) on J, with
W € Hy (J; Lp(Q) N Ly (J; H,y ()
and
0 € Hy(J; Lp,(0) N Lyp(J; HY(Q)),  9(t,x) >0 for all (t,x) € J x Q,
provided the data are subject to the following conditions.
1. fi,fa € Lp(Jo x Q),
g € W TN (Jo; 1, (09)) 0 Ly (Jos Wy TP (0),
g2 € W T (s Ly (99) 0 Ly (Jos Wy~ 7(09)),
g5 € Wp'* "1 (Jo; 1,,(99)) 0 Ly (Jos Wy~ 7 (02),
v € By /7(9), 90 € By Y7(Q),
9y Ao — 9, (¢o) + 9y (N (Y0)o) = —g1lt=0, if p > 5,

Outho = gali=0, V0 = g3li=0, if p > 3,
Jo(x) > 0 for all z € Q2.

e I
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The solution depends continuously on the given data and if the data are inde-
pendent of t, the map (Yo,%) — (¥,9) defines a local semiflow on the natural
(nonlinear) phase manifold

M,y = {(1ho, Do) € B ¥/P(Q) x B2 2/P(Q) : 4bg and ¥ satisfy 6. — 8.}.

4. Global Well-Posedness

In this section we will investigate the global existence of the solution to the con-
served Penrose-Fife type system

O —Ap =0, p=-AY+0(W)-NW)I, t>0, xeQ,

O (b(9) +A(¥)) — A9 =0, t>0, z€Q,
Opu=0,0,0v=0,0,9=0, t>0, z€ N,

$(0) = o, V(0) = Vo, t=0, zEQ,

(4.1)

with respect to time if the spatial dimension n is less or equal to 3. Note that
the boundary conditions are equivalent to 0,9 = 0,9 = 0,AY = 0. A successive
application of Theorem 3.2 yields a maximal interval of existence Jyax = [0, Tax)
for the solution (¢, 9) € E1(T) x Eo(T) of (4.1), where T’ € (0, Tiyax)- In the sequel
we will make use of the following assumptions.

(H1) ® € C*(R) and there exist some constants ¢; > 0, v > 0 such that
(s) = — 2% ey, [@"(s)] < call+Js|),

for all s € R, where 7 < A; with A; being the smallest nontrivial eigenvalue of
the negative Laplacian on 2 with Neumann boundary conditions and v < 3
if n=3.
(H2) A € C*(R) and X", N € Lo (R). In particular, there is a constant ¢ > 0
such that |A'(s)| < c(1+ |s|) for all s € R.
(H3) b€ C37((0,00)), b/'(s) > 0 on (0,00) and there is a constant x > 1 such that
1
p <It,z) <k

on Jyax X ). In particular, there exists o > 1 such that

1
— <Vt z)) <o,
o
on Jmax X .
Remark: Condition (H1) is certainly fulfilled, if ® is a polynomial of degree 2m,

m < 3.

We prove global well-posedness with respect to time by contradiction. For this
purpose, assume that Ty, < co. Multiply 0y = Ap by p and integrate by parts
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to the result

d
a (;Wl% +/Q<I’(w) dx) +1Vul3 —/wa)ﬂatw dr=0.  (4.2)

Next we multiply (4.1), by ¢ and integrate by parts. This yields
/ I (9)0,0 dx + |V +/ N ()90, dx = 0. (4.3)
Q Q
Set ('(s) = sb/(s) and add (4.2) to (4.3) to obtain the equation

d /1
4 (Lww+ /Q (1) do + /Q B(9) dz) + Vi3 + V93 =0, (4.4)

Integrating (4.4) with respect to t, we obtain

E(w(t),ﬂ(t))ﬂL/O (IVa(s)l3 +VI(s)3) dt = E(to, Vo), (4.5)

for all t € Jyax, where

E(u,v) == %|Vu|§ +/Q¢>(u) dx —4—/96(1)) dx.

It follows from (H1) and the Poincaré-Wirtinger inequality that
€ 2 1-¢ 2
5 | IVO@OF de+ —— [ [Vo@)° de+ | ®((1)) do
2 Ja 2 Ja Q

o — A
> 5 [ e o+ SR 008 - ago) - o ([ v,

since by equation 0y = Ap and the boundary condition d,pu = 0, it holds that

[ vt do= [ ole) de, t€ T
Q Q
Hence for a sufficiently small € > 0 we obtain the a priori estimates
¥ € Loo(Jmax; H3()) and  |Vpul|,|VI| € La(Jmax; L2(22)), (4.6)

since B(Y(t,x)) is uniformly bounded on Jyax X €2, by (H3). However, things are
more involved for higher order estimates. Here we have the following result.

Proposition 4.1. Let n < 3, p > (n+2)/2, p > 2 and let (,9) be the mazimal
solution of (4.1) with initial value Yo € Bﬁ;4/p(Q) and 99 € sz_Q/p(Q). Suppose
furthermore b € C3(0,00), b/'(s) > 0 for all s > 0, \,® € C*~(R) and let (H1)-
(H3) hold.

Then v € Loo(Jmax X Q) and 9 € H3(Jmax; L2(2)) N Loo (Jmax; Ha (Q)).
Moreover, it holds that 04 € Ly(Jmax X ), where v := min{p, 2(n + 4)/n}.

Proof. The proof is given in the Appendix.
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Define the new function u = b(+}). Then u satisfies the nonautonomous linear
differential equation in divergence form

Oru — div(a(t, z)Vu) = f, (4.7)

subject to the boundary and initial conditions d,u = 0 and u(0) = b(dg) =: uy,
where a(t,z) := 1/0/(9(t,z)) and f := =N (¢)0pp. With (H3), the regularity of ¥
from Proposition 4.1 carries over to the function wu; in particular ug € BIQ,;Z/p(Q).
This yields, that u is a weak solution of (4.7) in the sense of LIEBERMAN [11] &
DIBENEDETTO [7], and  is bounded by (H3).

Furthermore, by (H3)
1
0<—=<alt,z) <o < oo,
o

for all (t,x) € Jmax xQ. Note that by Proposition 4.1 it holds that f = =X ()0 €
L, (Jmax X Q), r := min{p, 2(n +4)/n}. Consider the case r = 2(n+4)/n. Then it
can be readily checked that

n+2 2(n+4)
<
2 n
provided n < 5. It follows from LIEBERMAN [11] & DIBENEDETTO [7] that there
exists a real number o € (0,1/2) such that u € C%?*(Qr, ), provided f €

Ly(Jmax x Q) and p > (n+2)/2. Here C*2*(Qr, ) is defined as

CO"QQ(T) — {1] c C(R) . sup |U(t,l‘) _ ’U(S,y)| < OO}

. (t,2),(5,Y) EQT ax |t - s|a + |CE - y‘Qa

=T

and we have set Q1 = (0, Tiax) X €. The properties of the function b then yield

that ¥ = b~1(u) € C*2%(Qr,. ). In a next step we solve the initial-boundary
value problem
oY —a(t,x)A¥ =g, t€ Jpax, T € Q,
0,9 =0, t€ Jnax, € 0N, (4.8)
30) =19, t=0, z€Q,

with g := —a(t,2)N (¥)0) € Ly (Jmax X Q) and 7 = 2(n+4)/n > (n+2)/2. By
[6, Theorem 2.1] we obtain

¥ € Hy (Jmax; L () 0 L (Jimass (),
of (4.8), since

9o € By, 2/P(Q) — BLA/T(Q), p>
At this point we use equation (6.8) from the proof of Proposition 4.1 to conclude
O¢tp € Ls(Jmax X ), with s = min{p, ¢} where ¢ is restricted by

11 2
72 —
q

r n+4
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For the case r = 2(n + 4)/n, this yields
1 n—4
q " 2(n+4)’

i.e. ¢ may be arbitrarily large in case n < 3 and we may set s = p. Now we solve
(4.8) again, this time with g € L,(Jmax X 2), to obtain

¥ € H) (Jmaxi Lp(€2)) N Ly (Jmax: H7 ()
and therefore 9(Tinax) € Bf,;? 2/p (Q) is well defined. Next, consider the equation
O + A% = AP (y) — AN (¢)9),

subject to the initial and boundary conditions 1(0) = ¥y and 9,9 = 9, Ay = 0.
By maximal L,-regularity there exists a constant M = M (Jmax) > 0 such that

U]y () < M1+ |AD (V)| x (1) + |AN ()9 x(1))- (4.9)
for each T' € Jipax. Since ¥ € Eo(Tiax) we may apply [12, Lemma 4.1] to the result
|AD ()| x (1) + [AN (¥)D) | x (1) < C(1 + |¢\5E1(T))a (4.10)

with some 6 € (0,1) and C > 0 being independent of T' € Jyyax. Combining (4.9)
with (4.10), we obtain the estimate

[Vl () < C(1+ |¢|§E1(T))a

which in turn yields that [¢|g, 7y is bounded as T' " Tax, since § € (0,1).

Therefore the value ¢(Tax) € Bpp 4/p (€2) is well defined and we may continue the
solution (¢, 1) beyond the point Ty,.x, contradicting the assumption that Jy.x =
[0, Tinax) is the maximal interval of existence. We summarize these considerations
in

Theorem 4.2. Letn < 3,p > (n+2)/2, p > 2 andp # 3,5. Assume that (H1)-(H3)
hold. Then for each Ty > 0 there exists a unique solution

¥ € Hy(Jo; Lp(2)) N Ly(Jo; Hy () = Ey(Ty)
and

¥ € Hy(Jo; Lp(2)) N Ly(Jos Hy () = Ex(To),
of (1.2), provided the data are subject to the following conditions.

1. Yo € Bpp /P(9), 9o € Bry /P(Q);

2. 0,A%g =0, if p>5, Oipp =0; -

3. 0,9 =0, if p>3, do(x) >0 for all x € Q.
The solution depends continuously on the given data and the map (g, o) — (¢, 9)
defines a semiflow on the natural phase manifold

M, = {(tbo, Vo) € B */P(Q) x B22/P(Q) 4y and g satisfy 2. & 3.}.
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5. Asymptotic Behavior

Let n < 3. In the following we will investigate the asymptotic behavior of global
solutions of the homogeneous system

Oy —Ap=0, p=-A¢Y+9' ()N, t>0, xeQ,
O (b() + A(W)) =AY =0, t>0, z€Q,

Oyu=0, t>0, e,

O =0, t>0, xe€df,

0,0=0, t>0, €,
Y(0) =g, 9(0) =19y, t=0, x €Q,

as t — oo. To this end let (¢, J9) € My, p > (n+2)/2, p > 2 and denote by

((t),¥(t)) the unique global solution of (5.1). In the sequel we will make use of
the following assumptions.

(H4) b€ C37((0,00)), b/'(s) > 0 on (0,00) and there is a constant x > 1 such that

(5.1)

1
- Sﬂ(tax> <k
K

on Jyax X €. In particular, there exists o > 1 such that
1
— <V (d(t2)) <o,
o
on Jmax X €.
(H5) The functions ®, A and b are real analytic on R.
We remark that assumption (H4) is identical to (H3) for a global solution. We
stated it here for the sake of readability.
Note that the boundary conditions (5.1) 5 yield

/Q it @) do = /Q Yola) d,

/Q (b(3(t, 2)) + A($(t,2))) dz = / (b(9(2)) + At (2))) de.

Q
Replacing ¢ by 1) = 1) — ¢, where ¢ := \ﬁll Jo %o(z) dz we see that [, 9 dz =0, if

®(s) and A(s) are replaced by ®(s) = ®(s + ¢) and A(s) = (s + ¢), respectively.
Similarly we can achieve that

/Q B, 7)) + AW 2))) da =0,

and

by a shift of A, to be precise A(s) := A(s) — d, where

1
4= / (b(9(2)) + A(Wo(2))) da.
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With these modifications of the data we obtain the constraints
/ Y(t,x) de =0 and /(b(ﬂ(t,x)) + A(W(t,x))) de = 0. (5.2)
Q Q

Recall from Section 4 the energy functional

E(u,v) = %|Vu|§ —|—/Q(I>(u) dx —l—/{lﬁ(v) dx,

defined on the energy space V = V; x Va, where

sz{ueHamzlkumzok Vo := Hy(Q), r € (n/4,1).

and V' is equipped with the canonical norm |(u,v)|v = [ulgy() + [v]a5@)- It is
convenient to embed V into a Hilbert space H = H; x H where

Hp:{uELﬂmzlkumzo} and  Hy = Ly(9Q).

Proposition 5.1. Let (¢,9) € E1 x Ey be a global solution of (5.1) and assume
(H1)-(H4). Then

1. ¢ € LOO(R-HH;%S(Q))a s € [Oa 1); pe (1,00), at’(/) € LQ(R+ X Q)7

2. 9 € Loo(Ry; HI(Q)), 019 € La(Ry x Q).
In particular the orbits (Ry) and 9(Ry) are relatively compact in H3(Q) and
HE (), respectively, where v € [0,1).

Proof. Assertions 1 & 2 follow directly from (H1)-(H4) and the proof of Proposition
4.1, which is given in the Appendix. Indeed, one may replace the interval J.x by
R, since the operator —A? = —A% generates an exponentially stable, analytic

24 .
A™ in the space

Xp::{ueLp(Q):/Qudxzo}

semigroup e~

with domain
D(A?*) ={u € Hy(Q)NX,: dyu=08,Au=0 on 0Q}.
O
By Assumption (H4), there exists some bounded interval Jy C R4 with
Ht,x) € Jy for all t > 0, = € Q. Therefore we may modify the nonlinearities b
and (3 outside Jy in such a way that b, 3 € C;~ (R).

Unfortunately the energy functional F is not yet the right one for our purpose,
since we have to include the nonlinear constraint

/Q () + b(9)) d = 0.
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into our considerations. The linear constraint [, ¢ dx = 0 is part of the definition
of the space Hj. For the nonlinear constraint we use a functional of Lagrangian
type which is given by

L(u,v) = E(u,v) — 0F(u,v),

defined on V, where F(u,v) := [,(AMu) + b(v)) dr and @ = ﬁfﬂw dx for a
function w € L;(£2). Concerning the differentiability of L we have the following
result.

Proposition 5.2. Under the conditions (H1)-(H4), the functional L is twice con-
tinuously Fréchet differentiable on V and the derivatives are given by

(L' (u,v), (ho k) vev =
(E'(u,0), (hyk))ve v — kF(u,v) — 0(F'(u,v), (h,k))v+y (5.3)
and
(L"(u, v)(h1, k1), (hay k2))ve v = (E" (u,v) (R, kr), (he, k2))ve v —
kL (F'(u, ), (ha, ka))v= v — ko (F' (u, ), (ha, k1))v= v —
O(F" (u,v)(h1, k1), (he, k2)yve v, (5.4)
where (h, k), (h;j, k) €V, j=1,2, and

(E'(u,v), (hyk))y+ v = /QVth dx + /Q &' (u)h dx + A B (v)k dz,

(E"(u,v)(h1, k1), (ha, k2))v- v =

/Vh1Vh2 d.’)ﬁ—l—/ q)/l(u)hlhg d.’)ﬁ—l—/ 5”(’0)1@'1]{2 dx,
Q Q Q

(F'(w0), (0 b)) = [

Q)\ (u)h d:c—i—/ b (v)k dz

0
and

(F"(u,v)(h1, k1), (ho, k2)) v+ v Z/)\”(u)hlhg dm—i—/ b (v)kiky da.
Q Q

Proof. We only consider the first derivative, the second one is treated in a similar
way. Since the bilinear form

a(u,v) = /QVu(x)VU(:U) dx (5.5)

defined on V7 x V; is bounded and symmetric, the first term in E is twice contin-
uously Fréchet differentiable. For the functional

Gi(u) = /Q@(u) de, weV,
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we argue as follows. With u, h € V7 it holds that

P(u(x) + h(z)) — e(u(z)) — @' (u(@))h(x)
1 d 1
:/0 = ®(u(x) + th(x)) dtf/o &' (u(z))h(z) dt

-/ () + the >>—<b'<u<x>))h<x> dt
/ / — &' (u(z) + sh(z))h(x) ds dt

/ / " (u(x) + sh(x))h(x)?* ds dt
/e

" (u(x) + sh(zx))h(z)*(1 — s) ds.

0

From the growth condition (H1), Holder’s inequality and the Sobolev embedding
theorem it follows that

| /Q (®ula) + h(2) — D(u(x) ' (u(@))h(z)) de]

< C/ (1+ [u(@)|* + |h(2)[*)|h(z)]* dz
Q
C(1+ |ulg + |hlg)|h
< O+ [uly, + |hl3;) IR, -

This proves that Gy is Fréchet differentiable and also Gy (u) = ®'(u) € Lg/5(2) —
Vi*. The next step is the proof of the continuity of G} : Vi — Vi*. We make again
use of (H1), the Holder inequality and the Sobolev embedding theorem to obtain

|G (u) = Gy (@)]v;

<o [ 19 @) - @ @@ dx)

olov

e

<C /Q(1+IU($)I?+|ﬂ($)l?)IU(x)—U( Ik dx)

<o [asmer i a) ([ e -aor)’

< CQ+ July, + lafy,)u —alv,

Actually this proves that G is even locally Lipschitz continuous on V;. The Fréchet
differentiability of G and the continuity of G can be proved in an analogue
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way. The fundamental theorem of differential calculus and the Sobolev embedding
theorem yield the estimate

|®(u+ h) — &' (u) — D" (u)h

v

oo

<c ( /Q / 8 () + shi@)] ()| # ds dx)

We apply Assumption (H1) and Holder’s inequality to the result
|®' (u+h) — D' (u) — @”(u)h|vl*

6

<o ([ + el )

<o [0+ @+ ) da:)% ([ e da:)é

Hence the Fréchet derivative is given by the multiplication operator GY (u) defined

by G{(u)v = ®"(u)v for all v € V; and ®"(u) € L3;2(Q2). We will omit the proof
of continuity of GY. The way to show the C?-property of the functional

Gao(u) := /Q)\(u(m)) de, wel,

is identical to the one above, by Assumption (H2). Concerning the C?-differentiability
of the functionals

G3(v) ::/Qﬁ(v(x)) dr and Gy(v) :z/Qb(v(sc)) dz, wveVy,

one may adopt the proof for G; and Gs. In fact, this time it is easier, since 3
and b are assumed to be elements of the space C’bB*(R)7 however one needs the
assumption r € (n/4,1). We will skip the details. Finally the product rule of
differentiation yields that L is twice continuously Fréchet differentiable on V7 x V5.

O

The corresponding stationary system to (5.1) will be of importance for the
forthcoming calculations. Setting all time-derivatives in (5.1) equal to 0 yields
Ap=0 and AY =0,

subject to the boundary conditions 0, u = 0,9 = 0. Thus we have u = us, = const,
¥ = ¥ = const and there remains the nonlinear elliptic problem of second order

{—Awm F O (Yhoo) = N (Yoo )oo = ficos T € L,

(5.6)
O =0, x € 09,
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with the constraints (5.2) for the unknowns 1, and ¥. The following proposition
collects some properties of the functional L and the w-limit set

w(®,9) == {(p,0) € Vi x Vo : 3 (t,,) / o0 s.t.
(¥(tn),d(tn)) — (p,0) in Vi x Va}.

Proposition 5.3. Under Hypotheses (H1)-(H4) the following assertions are true.

1. The w-limit set is nonempty, connected and compact.

2. Each point (Yoo, V) € w(, V) is a strong solution of the stationary problem
(5.6), where Yoo, floo = const and (Yoo, Vo) satisfies the constraints (5.2) for
the unknowns Voo, fhoo -

3. The functional L is constant on w(1,¥) and each point (Yoo, Vo) € w(th, ¥)
is a critical point of L, i.e. L'(Yoo,¥00) =0 in V*.

Proof. The fact that w(¢,?) is nonempty, connected and compact follows from
Proposition 5.1 and some well-known facts in the theory of dynamical systems.

Now we turn to 2. Let (¢eo, V) € w(?,9). Then there exists a sequence
(tn) /" +oo such that (¢(t,), ¥(tn)) = (Yoo, ¥oo) in V as n — oo. Since dy1), 0: €
Ly (R4 x Q) it follows that ¢ (¢, + 8) — oo and ¥(t, + s) — Joo in La(£2) for all
s € [0,1] and by relative compactness also in V. This can be seen as follows.

‘w(tn + 8) - wOOIQ < W)(tn + S) - w(tn”? + |w(tn) - woo|2
tn+s
< / 1000(E)]2 dt + (L) — ool

n

1/2

tn+s
<o ([ 108 &)+ 100) - vnda

Then, for ¢, — oo this yields (¢, + s) — ¥ for all s € [0,1]. The proof for ¥ is
the same. Integrating (4.4) with f; = f = 0 from ¢,, to ¢, + 1 we obtain

E('(/)(tn + 1)a19<tn + 1)) - E(w(tn)vﬁ(tn))
1
+/ / (IVutn + s,2)° + [VI(t, + s,2)|°) dx ds = 0.
0o Jo
Letting t,, — 400 yields
[Vulty, + )|, IVI(tn +-,)] — 0 in Lo([0,1] x Q).
This in turn yields a subsequence (t,,) such that Vu(t,, + ), VO(tn, +5) — 0

in Ly(2;R™) for a.e. s € [0,1]. Hence Vi, = 0, since the gradient is a closed
operator in Lo(2; R™). This in turn yields that ¥ is a constant.
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Furthermore the Poincaré-Wirtinger inequality implies that

[itny +87) = pltn, +57)2

< Gy (Vb +5°) = Vinltn, +57 )+ [ 18(06(tn, %) = (0lty, + 57| da
b [Nty 57000 +5%) = Nl + )0t +57)| o

for some s* € [0, 1]. Taking the limit k,! — oo we see that u(t,, + s*) is a Cauchy
sequence in Lo(2), hence it admits a limit, which we denote by . In the same
manner as for ¥, we therefore obtain Vs, = 0, hence p is a constant. Observe
that the relation

e = i ([@00) = Yo o)

is valid. Multiplying (5.1), by a function ¢ € H2(2) and integrating by parts we
obtain

(1(tn, +57),0)2 = (V(tn, +57), Vi)at
(" ((tny, +57))s0)2 = (N (W (tn, +57))0(tn, +57), @)

As t,, — oo it follows that
(Hoos )2 = (Vioo, V)2 + (P (¥e0), )2 = Voo (N (Vo) 0)2- (5.7)

By the Lax-Milgram theorem the bounded, symmetric and elliptic form

a(u,v) == / VuVo dz,

Q

defined on the space Vi x V; induces a bounded operator A : V3 — V¥ with
nonempty resolvent, such that

a(u, 'U) = <Au7 U>V1*7V17

for all (u,v) € Vi x V4. It is well-known that the domain of the part A, of the
operator A in

Xp:{ueLp(Q):/udx:O}
Q
is given by
D(Ap) = {u e X, NH(Q), d,u=0}.

Going back to (5.7) we obtain from (HI1) and (H2) that ¢, € D(A,), where
qg = 6/(68+ 2). Since ¢ > 6/5 we may apply a bootstrap argument to conclude
Yoo € D(Ay). Integrating (5.7) by parts, assertion 2 follows.
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In order to prove 3. , we make use of (5.3) to obtain

<L/(w0071900)7(hv k)>V*,V
= <El(w00a 1900)7 (h’ k)>V*,V - 1900<F/(7/10071900)a (h7 k»V*,V

- / (—Athoe 4+ @' (1)) h da: +/ B (Voo)k da
Q Q

-—mmlyxomah+b%axﬂ»dx

:/uoohdx:(),
Q

for all (h,k) € V, since js and 94 are constant. A continuity argument finally
yields the last statement of the proposition.

O

The following result is crucial for the proof of convergence.

Proposition 5.4 (Lojasiewicz-Simon inequality). Let (Yoo, Vo) € w(¥,¥) and as-
sume (H1)-(H5). Then there exist constants s € (0,1],C,8 > 0 such that

|L(u,v) = L(thoo, Do) |'=* < CIL (u, 0) |y,
whenever |(u,v) — (Yoo, Voo )|v < 4.
Proof. We show first that dim N(L" ()00, P¥s0)) < 00. By (5.4) we obtain
(L (to0; Voo ) (h1, k1), (a2, k2))v= v

:/Vh1Vh2 dx—l—/ <I>”(1/Joo)h1h2 dx—i—/ 5"(1900)]61/{2 dx
Q Q Q
—HLWW@M+W%%QM
—EAWW@M+W%MQM

—@/Q(A"(%)hlhg bV (a)hrks) da

Since B"(s) = b'(s) + sb”’(s) and ¥ = const we have
(L (05 Voo ) (R, k1), (Ray k) ve v

_ / Vi Vhs dm—i—/ (@ (to0) b — FaN (o) — oo X (t000) ) B di
Q Q

+ / (F (0o0) (bt — 27) — NV r ko da
Q

for all (hj, k;) € V. If (hy, k1) € N(L" (thos,¥o0)), it follows that
b/(ﬁoo)(kl - 2F1) - )\'(7/100)}% =0.
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It is obvious that a solution k7 to this equation must be constant, hence it is given
by
k= — (' (9o0)) TN (Yoo (5.8)

where we also made use of (H4). Concerning hy we have
<Ah17 h2>V1*,V1 = / (kl)\/(d}oo) + 1900)\”(’(/)00)h1 - (I)”(woo)hl)hQ dz, (59)
Q

since k; is constant. By Proposition 5.3 it holds that o € D(As) — Lo (),
hence Ahy € Hy, which means that h; € D(A3) and from (5.9) we obtain

Ath + P((I)H(d}oo)hl - 1900)‘//(7/)00)}11 - kl)‘/(woo» - 07

where P denotes the projection P : Hy — Hy, defined by Pu = u — u. It is an
easy consequence of the embedding D(A3) — Lo () that the linear operator
B : H, — H; given by

Bhl = P(q)/l(woo)hl - ﬁm)‘/l(woo)hl - kl)‘/(woo))
is bounded, where k; is given by (5.8). Furthermore the operator Ay defined in
the proof of Proposition 5.3 is invertible, hence A;'B : H; — D(Ay) is a compact
operator by compact embedding and this in turn yields that (I + A5 1B) is a
Fredholm operator. In particular it holds that dim N (I + A;lB) < 00, whence
N(L" (%00, ¥o0)) is finite dimensional and moreover

N(L"(¥o0,9s0)) € D(A2) x (H3(2) N Loo () = Loo(R) X Loo(9).
By Hypothesis (H5), the restriction of L’ to the space D(A3) x (H5(2) N Lo (£2))
is analytic in a neighbourhood of ()0, 0s). For the definition of analyticity in
Banach spaces we refer to [5, Section 3]. Now the claim follows from [5, Theorem

3.10 & Corollary 3.11].
O

Let us now state the main result of this section.

Theorem 5.5. Assume (H1)-(H5) and let (,0) be a global solution of (5.1). Then
the limits
tlim Y(t) = Yoo, and tlim ¥(t) =: Yoo = const

ezist in H3(Q) and H5(Q), r € (0,1), respectively, and (oo, Vo) is a strong
solution of the stationary problem (5.6).

Proof. Since by Proposition 5.3 the w-limit set is compact, we may cover it by
a union of finitely many balls with center (¢;,0;) € w(y,?¥) and radius ¢; > 0,
i=1,...,N. Since L(u,v) = Lo on w(t,d) and each (yp;,0;) is a critical point
of L, there are uniform constants s € (0, %], C > 0 and an open set U D w(), ),
such that

|L(u,v) — Loo|* ™ < C|L (u,v)| v+, (5.10)
for all (u,v) € U. Define H : R; — R, by

H{(t) == (L(4(1), () — Loo)”.
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The function H is nonincreasing and lim;_., H(t) = 0, since L(1(t),9(t)) =
E(4(t),9(t)) and since E is a strict Lyapunov functional for (5.1), which follows
from (4.4). Furthermore we have lim;_, o dist((¢(t), 9(¢)), w(,9)) = 0, i.e. there
exists t* > 0, such that (¢(t),9(t)) € U, for all ¢ > t*. Next, we compute and
estimate the time derivative of H. By (4.4) and Proposition 5.4 we obtain

~ i HO =5 (~ LW0.90)) IL((0.00) - Ll
V()3 + V903
S TORTG)

So have to estimate the term [L'(¢)(t),9(t))|v+. For convenience we will write
¥ =(t) and ¥ = J(t). From (5.3) we obtain with h =0

<L'(¢ﬂ9)a (hvk»V*,V
- / (=AY + &' (Y))h dz +/ 9 (0)k dx — @/ (N (W)h + b (k) dx
Q Q Q

(5.11)

:/(,u—ﬁ)h dx+/(19—5)x(¢)h dm+/(ﬂ—5)b’(ﬁ)k dz
? ! N (5.12)

An application of the Holder and Poincaré-Wirtinger inequality yields the esti-
mates

| / (9 — DN (W) el < [N (@)locld — Tlalhlz < c|VOlalhla, (5.13)
Q
| / (9 — DWWk dz < |¥(9)|ocld — Dlalklz < c[VOlkly  (5.14)
Q
and
[ b el < eVl (5.15)

whence we obtain

1L (¥ (1), 9(t))

by taking the supremum over all functions (h,k) € V with norm less than 1 in
(5.12)-(5.15). This in connection with (5.11) yields

_%H(t) > C(|Vu(t)|2 + |VI(t)|2),

hence |Vul, |VI| € Ly ([t*,00), L2(2)). Using the equation dy¢p = Ap we see that
Oh € Ly([t*,00), H3(Q)*), hence the limit

Jim w(t) = o

ve < CO(IVu)lz + [VI(?)]2),
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exists in H2(Q)* and even in H1(Q) thanks to Proposition 5.1. From equation
(5.1), it follows that d;e € Ly ([t*,00); Hy(Q)*), where e := b(J) + A(¢), i.e. the
limit lim;_ . e(t) exists in H4(£2)*. This in turn yields that the limit
lim b(9(t)) =: beo
t—oo
exists in Lo(€2), by relative compactness, cf. Proposition 5.1. By the monotonicity
assumption (H3) we obtain 9(t) = b=1(b(9(t))) and thus the limit of J(t) as t
tends to infinity exists in Lo(£2). From the relative compactness of the orbit ¥(R.)
it follows that the limit
lim ¥(t) =: 9o
t—oo

also exists in H3(2), r € [0,1). Finally Proposition 5.3 yields the last statement
of the theorem.
O

6. Appendix

Proof of Proposition 3.1

Let (u,v), (4,7) € Bg(u*,v*). By Sobolev embedding it holds that u, % and
v, ¥ are uniformly bounded in C*(Q) and C(€2), respectively. Furthermore, we will
use the following inequality, which has been proven in [17, Lemma 6.2.3].

[f(w) = f(@)]mgL,) < wT)(Jw=o]gzop,)+w=0]oc), 0<s<so<1, (6.1)

valid for every f € C?~(R) and all w,w € B} (u*)UB%(v*). Here u = u(T') denotes
a function, with the property u(T) — 0 as T — 0. The proof consists of several
steps

(i) By Holders inequality it holds that

|AD' (u) — AD'(a)| x (1)

< |Au®” (u) — Aud” (@) | x (1) + || Vu*®" (u) — [Va|*®" ()| x (1)
< |Aulrp,rp|q)”(u) - (I)H(ﬂ)lr’p,r’p + |Au — Amrpwplq)”(ﬂ)‘ﬂpm’p

+ TP (|Vuf 0|27 (1) = (@) ]s0,00 + [Vt = VT oo 00" () 0,00
TP (| Aty | B (1) = O (@) 0,00 + [ AU = Aty |7 () 0,00

+ TP ([VulZ o] @ () = " (1) 0,00 + |Vt = Vi 0,00 |®” () |0 00) »

since u,u € C(J;CH(Q)). We have
Aw € HP/2(J;H27%2)(Q)) — Ly (J x Q), 62 € [0,1],

for every function w € E1(T), since r > 1 may be chosen close to 1. Therefore we
obtain

|AD (1) — AV (@) x 2y < p(T) (R+ |u*]y) |u —
due to the assumption ® € C*~(R).
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(ii) Consider the term (X (¢g) — N (u))Av — (N (¢g) — N (1)) A7.
[(N (%) — N (u))Av — (N (o) — N(@)) Av|x (1)
< (N (o) = N(u)A(v = 0)|x (1) + (X' (w) = N (@) Av| x (1)
< W’O - U|oo,oo|v - 5|E2(T) + |u - ﬁ|oo,oo|1_]|E2(T)
S (W}O - U*|oo,oo + |U* - u|oo,oo)‘v - 1_)|E2(T)
+u =l g, (1) (10 = V" By (1) + [V | B2 (1))
< C(T) + R)|(u,v) — (4, 0)]1,
since A € C*~(R). Next, we consider the term V(X (19) — N (u)) Vv — V(N () —
N (1))V. We obtain
V(N (tho) = X (u)) Vo = V(X (o) — N(1))Vo|x (1)
< VN (%) = N ()]0 V(v = 0) | x (1) + [V(N (0) = N (@))] 00| VO x (1) -
Since
V(N (tho) = N (u)) = Vo (N (0) = N (u)) + X' (u)(Vipo — Vu),

and the same for V(\ (u) — X (4)), we may argue as above, to conclude

V(X (%) = N(1))]o0,00 V(v = 0)[x (1) + V(N (1) = N (@) ]50,00| VOLx 1)
< (W) + B)|(u,v) — (@, ).

Finally, we estimate the remaining part with Holder’s inequality to the result

WA (¥0) = N (u)) — DA (Yo) — N'(@))|x (1)
< |U - 17|00700|A(/\l(w0) - )‘/(“))|X(T) + |77|T’p7T'p‘A()‘/(u) - /\/(ﬂ))‘rpﬁpa (6.2)
where 1/r + 1/r' = 1. For the first part, we obtain
|AN (1ho) = XN ()] x (m)
< [AYolp A" (o) = A" (1) |os,00 + [Ato — Aulp| N ()] o0,00
+ Vo io,oo\)\"'(wo) - )‘m(u)loqoo + |)‘m(“)|oo,00|v¢0 = Vufoo,00
< C(Wo - u|o<>,o<> =+ |V¢o - Vu|<>o,<>o + |A'¢O - Au‘p,p)
< C(u(T) + R),
since ¢g € H2(Q)NC!(Q) and A € C*~ (R). For the second term in (6.2) we obtain
[ AN (u) = N(@))rp,rp
< ‘Au|rp,rp‘)‘”(u) - )‘H(a)loo,oo + |)‘//(ﬂ)|oo,OO|Au — Alifyprp
+ |vu|§o,oo‘)‘/”(u) - )‘W(a”oo,oo + |)‘W(a)|oo,oo‘vu - va|<>©,oo
< Clu — 1| g, (1),
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since u,u € C(J;C1(2)) and r > 1 can be chosen close enough to 1, due to the
fact that v € C(J;C(2)). Finally, we observe

Olrrprrp <10 =0 |rparp + [0 |prprp < 0(T) + R
(iii) For simplicity we set f(u,v) = apg\ (¢9) — a(v) N (u). Then we compute
| f(u,v)0pu — f(u, )0 x (1)
< |0l f(u,v) = f(u,9)|x(r) + [ /(@ 0) (O — Opti)|x () (6.3)
< (10w — O™ x () + 10pu” |x () f (w, v) = f (U D) s0,00
+ £ (@, 0)|oo,00 [Osu — Orti] x (1)
< Cps(T) + R)|f (u,v) = f(@ 0)]oo,00
+ £ (@ )] 00,00 [Ostt — Osi| x (1) -
Next we estimate
|f(u,v) = f(@,0)] 00,00
< la(v)(N'(u) = X'(@))]oo,00 + [N (@) (a(v) = a(9))]s0,00
< Ja(v)]oo,00| N (1) = N (@)]o0,00 + [N (@)|o0,00 [a(v) = a(0)] 00,00
< O(lu = tloo,00 + [0 = V]oo,00) < Cl(u,v) = (@, V)]s
Furthermore, we have
|£(@,9)] 00,00 < |a0]o0,00[ A" (1h0) = X' ()] 00,00 + X' (@) 00,0000 — (D) 0,00
< C(WO - ﬂ|<>o7<><> + ‘790 - @‘00,00)
< O([tho — U |oo,00 + [U" = Uloo,00 + [P0 — 07 [oo,00 + [V — Voo,00)
<OWT) + R).
The estimate of (ag —a(v))Av — (ap — a(0))AT in L,(J; L,(£2)) can be carried out
in a similar way.
(iv) We compute
(a(v) — a(v) fal x (1) < la(v) = a(?)|so,00l fol x (1) < |V = Vloo,00|f2]x (1)
< w(T)|v = 0] gy () < pw(T)|(u, v) — (4, D)1,
since fo € X(T) is a fixed function, hence |fa|x 7y — 0 as T'— 0.
(v) By trace theory, we obtain

10, (' (u) — (@) v; ()
< Ol ) = @) gy i, g + 12 () = @), (:30)-

The second norm has already been estimated in (i), so it remains to estimate
O’ (u) — ®'(a) in H;/Q(J; L,(£2)). Here we will use (6.1), to obtain

() — @ (8)] 172, ) < lT)(ju—
< WT)Clu = g,z < p(T)Cl(u,0) = (@D,

HO (L) T |u = 1 s0,00)
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since sg < 1.
(vi) We may apply (ii) and trace theory, to conclude that it suffices to estimate

(N (1h0) = N (w)o — (X' (1) — N'(@))o
= (V' (o) = N (w) (v — 1) — (N(w) — N'(@))®
in Hy/?(J; Ly(Q)). This yields

(X () = N () (0 = 9)] /2.

<IN (@0) = N(W)| 17201, 0 = Blocoo + 1N (¥0) = N (w)|ooyo0 0 = B g172,

< (V(0) = N (W) e gy + IV (@) = N (@) 1720, )0 = By

1 ([0 — U |so.00 + [4" = tloe,00) [0 — B 57y
< (IN (o) = N (W) 172y, + DR+ (W(T) + ) [o = 0l .

Clearly N (¢g) — N (u*) € OH;/2(J; L,(£2)), since 1y does not depend on ¢t and
since A € C4~(R). Therefore it holds that

|\ (1o) — X(U*)\H;/z(Lp) — 0
as T — 0. The second part (A (u) — X (@))v can be treated as follows.
N () = X @)l 22,
< V() = N (@) gy Bl + N () = X @loeo o2,
< CWT) + R+ w(T))|u —ulg, (1)
where we applied again (6.1). This completes the proof of the proposition.

Proof of Proposition 4.1
Let J2.. := [0, Timax) for some small § > 0. Setting A% = A%, with domain

D(A?) ={u € Hy(Q) : dyu = 0,Au =0 on 09},

the solution v (t) of equation (4.1),; may be represented by the variation of param-
eters formula

t
(t) = e~ e + / A=) (X () (s) = @ (U(s))) ds, € Tnax, (6:4)
0
where e=4”t denotes the analytic semigroup, generated by —A% = —A%; in L,(12).
By (H1), (H2) and (4.6) it holds that
D' (Y) € Loo(Jmax; Lo () and  N'(¥) € Loo(Jmax; Le(£2)),

with qo = 6/(y + 2). We then apply A", r € (0,1), to (6.4) and make use of
semigroup theory to obtain

¥ € Loo (S Hyy (), (6.5)
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valid for all 7 € (0, 1), since gy < 6. It follows from (6.5) that 1) € Lo (J3 . Lp, (2))
if 2r —3/qo > —3/p1, and

(1)) € Loo(Sraxi Ly () as well as N () € Loo (I Ly, (),
with ¢1 = p1/(y + 2). Hence we have this time
¥ € Loo(Slas HIT(Q)), 7€ (0,1).
Iteratively we obtain a sequence (pp)nen, such that
27“—32— 3 , neNg
dn Pn+1

with ¢, = pn /(v + 2) and py = 6. Thus the sequence (p,)nen, may be recursively
estimated by

1 > Y+2 21,

Pn+1 Pn 3
for all n € Ny and r € (0,1). From this definition it is not difficult to obtain the
following estimate for 1/p,11.

1 y+2)m o &
>( ) _72(74_2)]6

Pnt1 Po 3=
_ (y+2)tt 2p <(v + 2)"tt — 1)
Po 3 7+1

1 2
= (y+2)"H ( 1 n € No. (6.6)

> N 2r
po  3y+3 3y+3’
By the assumption (H1) on v we see that the term in brackets is negative if

€ (0,1) is sufficiently close to 1 and therefore, after finitely many steps the
entire right side of (6.6) is negative as well, whence we may choose p,, arbitrarily
large or we may even set p, = oo for n > N and a certain N € Ny. In other words
this means that for those r € (0,1) we have

W € Loo (s Hy'(92)), (6.7)
for all p € [1,00]. It is important, that we can achieve this result in finitely many

steps!

Next we will derive an estimate for 0;1. For all forthcoming calculations we
will use the abbreviation ¢ = 9 (t) and ¥ = 9(t). Since we only have estimates on
the interval JO_ . we will use the following solution formula.

max?

2 t=o 2
wlt) = ANy [ A (X (@) () (- ) ds, € T
0

where 15 := ¢(0). Differentiating with respect to ¢, we obtain

dr(t) / SN ()90, + N ()30 — B" (D)D)t — s) ds
+ F(t,vs,795), (6.8)
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for all ¢t > ¢ and with
F(t,15,95) = Ae™ = (X (1h5)05 — @' (15)) — A%e 4" (=0,
Let us discuss the function F' in detail. By the trace theorem we have 15 €

Bf,p_‘l/p(ﬂ) and ¥5 € Bf,p_Q/p(Q). Since we assume p > (n + 2)/2, it holds that

¥5,0s € Loo(f2). Furthermore, the semigroup e~ A% ig analytic. Therefore there

exist some constants C > 0 and w € R such that

1 1Y
[F(t,45,96)|1,0) < C ((t—6)1/2 + t5) e,

for all £ > §. This in turn implies that
F('a¢577~95) € LZD(Jriax X Q)

for all p € (1,00), where 0 < § < ¢’ < Tinax. We will now use equations (5.1), , to
rewrite the integrand in (6.8) in the following way.

(X" ()9 — ®"(¢))dp + N (¢)0,9
= (\'(¥)0 = "(¥))Ap + ) b (o)

— div [(/\”(1/))19 - A;/((lf;); - <1>”(¢)> w] + div B:((g)) w} (6.9)

/ 2 /
() NW) o
b'(0) b' ()
Thus we obtain a decomposition of the following form
(X" ()9 — " (1)) 0 + N (¥) 00
= div(f, Vi + foVI) + 9,V + go VI + h, VIV + hy|VI)?,

NW) NP

=9 (W= - w)) V- v

with
A\ )\/(1/))2 " L )‘/(1/1)
f# = A (1/))19_ b/(’ﬁ) - (d))’ f19 = b,(ﬂ),
Ip = — ()‘/N(w)ﬁ - 2)\ (zl/)}/)(i;)(w) - ‘I’HWJ)) VT/’» gy ‘= _)Z\)/(<1;/;) V’lpa
hy = N () W, ho = b"(;()g)/ﬁw.

By Assumption (H3) and the first part of the proof it holds that f;,g;,h; €

Loo(J2, % Q) for each j € {u,9} and this in turn yields that
div(f, Vi + f9 VD) € Lo(Jp0 H3 (2)7),

9y Vi + g9 -V € Ly(J2,, x Q),

h, N9 -V + hg| V2 € Ly(J2,, x Q),
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where we also made use of (4.6). Setting

Ty = Ae s div(f, Vi + f3V0), To=Ae "% (g, - Vu+ gy - V)
and
= Ae s (B, VO - Vi + hy|VI]?),
we may rewrite (6.8) as
Op =Ty + T + T3 + F(t, 10, 00).
Going back to (6.8) we obtain

Ty € Hy*(J2,.; Lo(Q)) N Ly(J?

max7 max 7

Ty € Hy* (s L2(Q)) N Lo (]

('ﬂ%ﬂ%) € L2(nga.x X Q)

Observe that we do not have full regularity for T5 since A has no maximal regularity
in L;(92), but nevertheless we obtain

Ty € Hy*™ (T L1(2)) N Ly (T s HE ().

Here we used the notation H,~ := H;~° and € > 0 is sufficiently small. An
application of the mixed derivative theorem then yields

HY7 (806 L1 () 0 Ly (Tt HE () o Ly(J0
if p e (1,8/7), whence
0tp € Lo (T3 % Q) + Ly(J0: L2(92))

for some 1 < p < 8/7. Now we go back to (6.9) where we replace this time only
0¢¥ by the differential equation (5.1), to obtain

V()9 — B(6))utb + N ()00
/ 2
- </\”(¢)19 _ ey - MW ) Or

H3(Q)) < Lo(JS
H3(Q)) < Lo(JS

Ly(92)),

b'(v)
- [N(¥) /\”(1/1) X(iﬁ)b”( ) o912

= foup + div [gVI] + h - VI + k| V9|2
Rewrite (6.8) in the following way
Oy = S1+ Sy + S5+ Sy + F(t, v, d), (6.10)

where the functions S; are defined in the same manner as 7Tj. Since f,g,h €

Loo(J2 . x ) it follows again from regularity theory that
S1 € Hy* (i L2(0) 0 Lo( i H3(92))

+ HY2 (I La(9)) N Ly (T HE(R)),
Sa € Hy!* (I8 L2(2)) N Lo (0 H3()),
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Sy € Hy*(J?

max7

Lo()) N Lo (T H3 (),
and it can be readily verified that
HI/Q(Jriaxv (Q)) (ngax’ 2(9)) - LQ(Jrflax X Q)’
whenever p € [1,2]. Now we turn our attention to the term Sy = Ae=A’t « k| V9|2
First we observe that by the mixed derivative theorem the embedding
Zy = Hy* (L L () N Lo(Ja HY () = La( T % Q)
is valid, provided that ¢ € (8/5,2]. Hence it holds that
S4l2,2 < C|S4|z, < ClkIVI? g1 < CIVI[3, 5,
with some constant C' > 0. Taking the norm of 8¢ in Ly(J2, . x Q) we obtain
from (6.10)
3
0bla2 < C [ D ISjl2.2 + [V0I3q0 + [F (-, s, 05)|2.2
j=1
The Gagliardo-Nirenberg inequality in connection with (4.6) yields the estimate
(V91342 < cVORSIVIL " < Vo,
provided that a = 1/¢. Multiply (4.1), by 0;¥ and integrate by parts to the result

/Qb’( (1, 2)) 00t ) d3 VD)3 = /QX(w(m))atzp(t,x)am(t,g;) dr.

Making use of (H3) and Young’s inequality we obtain

1
C1lO 5 + 51O < Cal0u o + 9 00[3), (6.11)

after integrating w.r.t. £. This in turn yields the estimate
(V92 < VO™ < e+ |0l "),

In order to gain something from this inequality we require that 2(1 —a) < 1, i.e.
q is restricted by 1 < ¢ < 2. Finally, if we choose ¢ € (8/5,2) and use the uniform
boundedness of the Ly norms of S;, j € {1,2,3} we obtain

|0:)]22 < C(1+ |5t¢|2(1 ).
Since by construction 2(1 —a) < 1, it follows that the Ly-norm of 9,4 is bounded
on J % Q. In particular, this yields the statement for ¥ by equation (6.11).

max

Now we go back to (6 8) with § replaced by §’. By Assumption (H5), by the
bounds 9,9, 041 € Lo(J2,; L2(Q)) and by the first part of the proof we obtain

)\//(1/’)1981511’ + >\ (1/’)3:&19 - (b//(w)atd} S LQ( max7 (Q))

Since the operator A2 = A? with domain

D(A?) = {u € Hy(Q) : du = d,Au =0}
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has the property of maximal L,-regularity (cf. [6, Theorem 2.1]), we obtain from
(6.8)
Ot = F (-, 957) € Hy* (T L2(0) N La( Ty H3 () = Lo( T Li(2),

max? nax?

and the last embedding is valid for all r < 2(n + 4)/n. By the properties of the
function F' it follows

o € LT(JI(E’II;X; L.(2)),

for all » < 2(n + 4)/n and some 0 < 0" < Tpax. To obtain an estimate for the

whole interval Jp,,x, we use the fact that we already have a local strong solution,
ie. Opp € Lp(0,0"; L,y(Q)), p > (n+2)/2. The proof is complete.
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